
Benchmark - benchmark running times of Perl code

Perl version 5.8.6 documentation - Benchmark

Page 1http://perldoc.perl.org

NAME

SYNOPSIS
use Benchmark qw(:all) ;

timethis ($count, "code");

Use Perl code in strings...
timethese($count, {

’Name1’ => ’...code1...’,
’Name2’ => ’...code2...’,

});

... or use subroutine references.
timethese($count, {

’Name1’ => sub { ...code1... },
’Name2’ => sub { ...code2... },

});

cmpthese can be used both ways as well
cmpthese($count, {

’Name1’ => ’...code1...’,
’Name2’ => ’...code2...’,

});

cmpthese($count, {
’Name1’ => sub { ...code1... },
’Name2’ => sub { ...code2... },

});

...or in two stages
$results = timethese($count,

{
’Name1’ => sub { ...code1... },
’Name2’ => sub { ...code2... },

},
’none’

);
cmpthese($results) ;

$t = timeit($count, ’...other code...’)
print "$count loops of other code took:",timestr($t),"\n";

$t = countit($time, ’...other code...’)
$count = $t->iters ;
print "$count loops of other code took:",timestr($t),"\n";

enable hires wallclock timing if possible
use Benchmark ’:hireswallclock’;

The Benchmark module encapsulates a number of routines to help you figure out how long it takes to
execute some code.

timethis - run a chunk of code several times

timethese - run several chunks of code several times

cmpthese - print results of timethese as a comparison chart

timeit - run a chunk of code and see how long it goes

countit - see how many times a chunk of code runs in a given time

new

Returns the current time. Example:

debug

Enables or disable debugging by setting the flag:

iters

Returns the number of iterations.

The following routines will be exported into your namespace if you use the Benchmark module:

timeit(COUNT, CODE)

Arguments: COUNT is the number of times to run the loop, and CODE is the code
to run. CODE may be either a code reference or a string to be eval'd; either way it
will be run in the caller's package.

Returns: a Benchmark object.

timethis (COUNT, CODE, [TITLE, [STYLE]])

Time COUNT iterations of CODE. CODE may be a string to eval or a code
reference; either way the CODE will run in the caller's package. Results will be
printed to STDOUT as TITLE followed by the times. TITLE defaults to "timethis
COUNT" if none is provided. STYLE determines the format of the output, as
described for timestr() below.

The COUNT can be zero or negative: this means the
to run. A zero signifies the default of 3 seconds. For example to run at

least for 10 seconds:

or to run two pieces of code tests for at least 3 seconds:

Perl version 5.8.6 documentation - Benchmark

Page 2http://perldoc.perl.org

DESCRIPTION

Methods

Standard Exports

use Benchmark;
$t0 = new Benchmark;
... your code here ...
$t1 = new Benchmark;
$td = timediff($t1, $t0);
print "the code took:",timestr($td),"\n";

debug Benchmark 1;
$t = timeit(10, ’ 5 ** $Global ’);
debug Benchmark 0;

timethis(-10, $code)

$Benchmark::Debug

minimum number of CPU
seconds

CPU seconds is, in UNIX terms, the user time plus the system time of the process
itself, as opposed to the real (wallclock) time and the time spent by the child
processes. Less than 0.1 seconds is not accepted (-0.01 as the count, for
example, will cause a fatal runtime exception).

Note that the CPU seconds is the time: CPU scheduling and other
operating system factors may complicate the attempt so that a little bit more time is
spent. The benchmark output will, however, also tell the number of
runs/second, which should be a more interesting number than the actually spent
seconds.

Returns a Benchmark object.

timethese (COUNT, CODEHASHREF, [STYLE])

The CODEHASHREF is a reference to a hash containing names as keys and
either a string to eval or a code reference for each value. For each (KEY, VALUE)
pair in the CODEHASHREF, this routine will call

The routines are called in string comparison order of KEY.

The COUNT can be zero or negative, see timethis().

Returns a hash of Benchmark objects, keyed by name.

timediff (T1, T2)

Returns the difference between two Benchmark times as a Benchmark object
suitable for passing to timestr().

timestr (TIMEDIFF, [STYLE, [FORMAT]])

Returns a string that formats the times in the TIMEDIFF object in the requested
STYLE. TIMEDIFF is expected to be a Benchmark object similar to that returned
by timediff().

STYLE can be any of 'all', 'none', 'noc', 'nop' or 'auto'. 'all' shows each of the 5
times available ('wallclock' time, user time, system time, user time of children, and
system time of children). 'noc' shows all except the two children times. 'nop' shows
only wallclock and the two children times. 'auto' (the default) will act as 'all' unless
the children times are both zero, in which case it acts as 'noc'. 'none' prevents
output.

FORMAT is the -style format specifier (without the leading '%') to use to
print the times. It defaults to '5.2f'.

The following routines will be exported into your namespace if you specifically ask that they be
imported:

clearcache (COUNT)

Clear the cached time for COUNT rounds of the null loop.

clearallcache ()

Clear all cached times.

cmpthese (COUNT, CODEHASHREF, [STYLE])

cmpthese (RESULTSHASHREF, [STYLE])

Optionally calls timethese(), then outputs comparison chart. This:

Perl version 5.8.6 documentation - Benchmark

Page 3http://perldoc.perl.org

timethese(0, { test1 => ’...’, test2 => ’...’})

timethis(COUNT, VALUE, KEY, STYLE)

minimum

$code

printf(3)

Optional Exports

outputs a chart like:

This chart is sorted from slowest to fastest, and shows the percent speed
difference between each pair of tests.

c<cmpthese> can also be passed the data structure that timethese() returns:

in case you want to see both sets of results.

Returns a reference to an ARRAY of rows, each row is an ARRAY of cells from the
above chart, including labels. This:

returns a data structure like:

: This result value differs from previous versions, which returned the
result structure. If you want that, just use the two statement

... idiom shown above.

Incidently, note the variance in the result values between the two examples; this is
typical of benchmarking. If this were a real benchmark, you would probably want to
run a lot more iterations.

countit(TIME, CODE)

Arguments: TIME is the minimum length of time to run CODE for, and CODE is the
code to run. CODE may be either a code reference or a string to be eval'd; either
way it will be run in the caller's package.

TIME is negative. countit() will run the loop many times to calculate the speed
of CODE before running it for TIME. The actual time run for will usually be greater
than TIME due to system clock resolution, so it's best to look at the number of
iterations divided by the times that you are concerned with, not just the iterations.

Returns: a Benchmark object.

disablecache ()

Disable caching of timings for the null loop. This will force Benchmark to
recalculate these timings for each new piece of code timed.

enablecache ()

Enable caching of timings for the null loop. The time taken for COUNT rounds of
the null loop will be calculated only once for each different COUNT used.

timesum (T1, T2)

Perl version 5.8.6 documentation - Benchmark

Page 4http://perldoc.perl.org

cmpthese(-1, { a => "++\$i", b => "\$i *= 2" }) ;

Rate b a
b 2831802/s -- -61%
a 7208959/s 155% --

$results = timethese(-1, { a => "++\$i", b => "\$i *= 2"
}) ;

cmpthese($results);

my $rows = cmpthese(-1, { a => ’++$i’, b => ’$i *= 2’ },
"none");

[
[’’, ’Rate’, ’b’, ’a’],
[’b’, ’2885232/s’, ’--’, ’-59%’],
[’a’, ’7099126/s’, ’146%’, ’--’],

]

NOTE
timethese()
timethese cmpthese

not

Returns the sum of two Benchmark times as a Benchmark object suitable for
passing to timestr().

If the Time::HiRes module has been installed, you can specify the special tag for
Benchmark (if Time::HiRes is not available, the tag will be silently ignored). This tag will cause the
wallclock time to be measured in microseconds, instead of integer seconds. Note though that the
speed computations are still conducted in CPU time, not wallclock time.

The data is stored as a list of values from the time and times functions:

in seconds for the whole loop (not divided by the number of rounds).

The timing is done using time(3) and times(3).

Code is executed in the caller's package.

The time of the null loop (a loop with the same number of rounds but empty loop body) is subtracted
from the time of the real loop.

The null loop times can be cached, the key being the number of rounds. The caching can be
controlled using calls like these:

Caching is off by default, as it can (usually slightly) decrease accuracy and does not usually noticably
affect runtimes.

For example,

outputs something like this:

while

Perl version 5.8.6 documentation - Benchmark

Page 5http://perldoc.perl.org

:hireswallclock
:hireswallclock

NOTES

EXAMPLES

($real, $user, $system, $children_user, $children_system, $iters)

clearcache($key);
clearallcache();

disablecache();
enablecache();

use Benchmark qw(cmpthese) ;
$x = 3;
cmpthese(-5, {

a => sub{$x*$x},
b => sub{$x**2},

});

Benchmark: running a, b, each for at least 5 CPU seconds...
Rate b a

b 1559428/s -- -62%
a 4152037/s 166% --

use Benchmark qw(timethese cmpthese) ;
$x = 3;
$r = timethese(-5, {

outputs something like this:

Benchmark inherits from no other class, except of course for Exporter.

Comparing eval'd strings with code references will give you inaccurate results: a code reference will
show a slightly slower execution time than the equivalent eval'd string.

The real time timing is done using time(2) and the granularity is therefore only one second.

Short tests may produce negative figures because perl can appear to take longer to execute the
empty loop than a short test; try:

The system time of the null loop might be slightly more than the system time of the loop with the
actual code and therefore the difference might end up being < 0.

- a Perl code profiler

Jarkko Hietaniemi < >, Tim Bunce < >

September 8th, 1994; by Tim Bunce.

March 28th, 1997; by Hugo van der Sanden: added support for code references and the already
documented 'debug' method; revamped documentation.

April 04-07th, 1997: by Jarkko Hietaniemi, added the run-for-some-time functionality.

September, 1999; by Barrie Slaymaker: math fixes and accuracy and efficiency tweaks. Added
cmpthese(). A result is now returned from timethese(). Exposed countit() (was runfor()).

December, 2001; by Nicholas Clark: make timestr() recognise the style 'none' and return an empty
string. If cmpthese is calling timethese, make it pass the style in. (so that 'none' will suppress output).
Make sub new dump its debugging output to STDERR, to be consistent with everything else. All bugs
found while writing a regression test.

September, 2002; by Jarkko Hietaniemi: add ':hireswallclock' special tag.

Perl version 5.8.6 documentation - Benchmark

Page 6http://perldoc.perl.org

a => sub{$x*$x},
b => sub{$x**2},

});
cmpthese $r;

Benchmark: running a, b, each for at least 5 CPU seconds...
a: 10 wallclock secs (5.14 usr + 0.13 sys = 5.27 CPU) @

3835055.60/s (n=20210743)
b: 5 wallclock secs (5.41 usr + 0.00 sys = 5.41 CPU) @

1574944.92/s (n=8520452)
Rate b a

b 1574945/s -- -59%
a 3835056/s 144% --

timethis(100,’1’);

INHERITANCE

CAVEATS

SEE ALSO

AUTHORS

MODIFICATION HISTORY

Devel::DProf

jhi@iki.fi Tim.Bunce@ig.co.uk

February, 2004; by Chia-liang Kao: make cmpthese and timestr use time statistics for children instead
of parent when the style is 'nop'.

Perl version 5.8.6 documentation - Benchmark

Page 7http://perldoc.perl.org

