
File::Temp - return name and handle of a temporary file safely

This module is designed to be portable across operating systems and it currently supports Unix, VMS,
DOS, OS/2, Windows and Mac OS (Classic). When porting to a new OS there are generally three
main issues that have to be solved:

Can the OS unlink an open file? If it can not then the method
should be modified.

Are the return values from reliable? By default all the return values from are
compared when unlinking a temporary file using the filename and the handle. Operating
systems other than unix do not always have valid entries in all fields. If fails then the

comparison should be modified accordingly.

Security. Systems that can not support a test for the sticky bit on a directory can not use the
MEDIUM and HIGH security tests. The method should be modified
accordingly.

Object interface:

MkTemp family:

Perl version 5.8.6 documentation - File::Temp

Page 1http://perldoc.perl.org

NAME

PORTABILITY

SYNOPSIS

_can_unlink_opened_file

stat stat

unlink0
stat

_can_do_level

use File::Temp qw/ tempfile tempdir /;

$dir = tempdir(CLEANUP => 1);
($fh, $filename) = tempfile(DIR => $dir);

($fh, $filename) = tempfile($template, DIR => $dir);
($fh, $filename) = tempfile($template, SUFFIX => ’.dat’);

$fh = tempfile();

require File::Temp;
use File::Temp ();

$fh = new File::Temp($template);
$fname = $fh->filename;

$tmp = new File::Temp(UNLINK => 0, SUFFIX => ’.dat’);
print $tmp "Some data\n";
print "Filename is $tmp\n";

use File::Temp qw/ :mktemp /;

($fh, $file) = mkstemp("tmpfileXXXXX");
($fh, $file) = mkstemps("tmpfileXXXXXX", $suffix);

$tmpdir = mkdtemp($template);

$unopened_file = mktemp($template);

POSIX functions:

Compatibility functions:

can be used to create and open temporary files in a safe way. There is both a function
interface and an object-oriented interface. The File::Temp constructor or the tempfile() function can be
used to return the name and the open filehandle of a temporary file. The tempdir() function can be
used to create a temporary directory.

The security aspect of temporary file creation is emphasized such that a filehandle and filename are
returned together. This helps guarantee that a race condition can not occur where the temporary file
is created by another process between checking for the existence of the file and its opening.
Additional security levels are provided to check, for example, that the sticky bit is set on world writable
directories. See for more information.

For compatibility with popular C library functions, Perl implementations of the mkstemp() family of
functions are provided. These are, mkstemp(), mkstemps(), mkdtemp() and mktemp().

Additionally, implementations of the standard tmpnam() and tmpfile() functions are provided if
required.

Implementations of mktemp(), tmpnam(), and tempnam() are provided, but should be used with
caution since they return only a filename that was valid when function was called, so cannot
guarantee that the file will not exist by the time the caller opens the filename.

This is the primary interface for interacting with . Using the OO interface a temporary file
can be created when the object is constructed and the file can be removed when the object is no
longer required.

Note that there is no method to obtain the filehandle from the object. The object itself
acts as a filehandle. Also, the object is configured such that it stringifies to the name of the temporary
file.

Create a temporary file object.

by default the object is constructed as if was called without options, but with the
additional behaviour that the temporary file is removed by the object destructor if UNLINK is
set to true (the default).

Supported arguments are the same as for : UNLINK (defaulting to true), DIR and
SUFFIX. Additionally, the filename template is specified using the TEMPLATE option. The
OPEN option is not supported (the file is always opened).

Perl version 5.8.6 documentation - File::Temp

Page 2http://perldoc.perl.org

use File::Temp qw/ :POSIX /;

$file = tmpnam();
$fh = tmpfile();

($fh, $file) = tmpnam();
$fh = tmpfile();

$unopened_file = File::Temp::tempnam($dir, $pfx);

my $tmp = new File::Temp();

DESCRIPTION

OO INTERFACE

File::Temp

File::Temp

File::Temp

tempfile

tempfile

safe_level

POSIX

new

Arguments are case insensitive.

Return the name of the temporary file associated with this object.

This method is called automatically when the object is used as a string.

When the object goes out of scope, the destructor is called. This destructor will attempt to
unlink the file (using) if the constructor was called with UNLINK set to 1 (the default
state if UNLINK is not specified).

No error is given if the unlink fails.

This section describes the recommended interface for generating temporary files and directories.

This is the basic function to generate temporary files. The behaviour of the file can be
changed using various options:

Create a temporary file in the directory specified for temporary files, as specified by the
tmpdir() function in .

Create a temporary file in the current directory using the supplied template. Trailing `X'
characters are replaced with random letters to generate the filename. At least four `X'
characters must be present at the end of the template.

Same as previously, except that a suffix is added to the template after the `X' translation.
Useful for ensuring that a temporary filename has a particular extension when needed by
other applications. But see the WARNING at the end.

Translates the template as before except that a directory name is specified.

Return the filename and filehandle as before except that the file is automatically removed
when the program exits. Default is for the file to be removed if a file handle is requested and to
be kept if the filename is requested. In a scalar context (where no filename is returned) the file
is always deleted either on exit or when it is closed.

If the template is not specified, a template is always automatically generated. This temporary
file is placed in tmpdir() () unless a directory is specified explicitly with the DIR
option.

If called in scalar context, only the filehandle is returned and the file will automatically be

Perl version 5.8.6 documentation - File::Temp

Page 3http://perldoc.perl.org

$tmp = new File::Temp(TEMPLATE => ’tempXXXXX’,
DIR => ’mydir’,
SUFFIX => ’.dat’);

$filename = $tmp->filename;

($fh, $filename) = tempfile();

($fh, $filename) = tempfile($template);

($fh, $filename) = tempfile($template, SUFFIX => $suffix)

($fh, $filename) = tempfile($template, DIR => $dir);

($fh, $filename) = tempfile($template, UNLINK => 1);

$fh = tempfile($template, DIR => $dir);

filename

DESTROY

tempfile

unlink1

FUNCTIONS

File::Spec

File::Spec

deleted when closed (see the description of tmpfile() elsewhere in this document). This is the
preferred mode of operation, as if you only have a filehandle, you can never create a race
condition by fumbling with the filename. On systems that can not unlink an open file or can not
mark a file as temporary when it is opened (for example, Windows NT uses the

flag) the file is marked for deletion when the program ends (equivalent to
setting UNLINK to 1). The flag is ignored if present.

This will return the filename based on the template but will not open this file. Cannot be used
in conjunction with UNLINK set to true. Default is to always open the file to protect from
possible race conditions. A warning is issued if warnings are turned on. Consider using the
tmpnam() and mktemp() functions described elsewhere in this document if opening the file is
not required.

Options can be combined as required.

This is the recommended interface for creation of temporary directories. The behaviour of the
function depends on the arguments:

Create a directory in tmpdir() (see).

Create a directory from the supplied template. This template is similar to that described for
tempfile(). `X' characters at the end of the template are replaced with random letters to
construct the directory name. At least four `X' characters must be in the template.

Specifies the directory to use for the temporary directory. The temporary directory name is
derived from an internal template.

Prepend the supplied directory name to the template. The template should not include parent
directory specifications itself. Any parent directory specifications are removed from the
template before prepending the supplied directory.

Using the supplied template, create the temporary directory in a standard location for
temporary files. Equivalent to doing

but shorter. Parent directory specifications are stripped from the template itself. The
option is ignored if is set explicitly. Additionally, is implied if neither a template
nor a directory are supplied.

Create a temporary directory using the supplied template, but attempt to remove it (and all
files inside it) when the program exits. Note that an attempt will be made to remove all files
from the directory even if they were not created by this module (otherwise why ask to clean it
up?). The directory removal is made with the rmtree() function from the module. Of
course, if the template is not specified, the temporary directory will be created in tmpdir() and
will also be removed at program exit.

Perl version 5.8.6 documentation - File::Temp

Page 4http://perldoc.perl.org

O_TEMPORARY
UNLINK

TMPDIR
DIR TMPDIR

(undef, $filename) = tempfile($template, OPEN => 0);

$tempdir = tempdir();

$tempdir = tempdir($template);

$tempdir = tempdir (DIR => $dir);

$tempdir = tempdir ($template, DIR => $dir);

$tempdir = tempdir ($template, TMPDIR => 1);

$tempdir = tempdir ($template, DIR => File::Spec->tmpdir);

$tempdir = tempdir($template, CLEANUP => 1);

tempdir

File::Spec

File::Path

The following functions are Perl implementations of the mktemp() family of temp file generation
system calls.

Given a template, returns a filehandle to the temporary file and the name of the file.

In scalar context, just the filehandle is returned.

The template may be any filename with some number of X's appended to it, for example
. The trailing X's are replaced with unique alphanumeric combinations.

Similar to mkstemp(), except that an extra argument can be supplied with a suffix to be
appended to the template.

For example a template of and suffix of would generate a file similar to
.

Returns just the filehandle alone when called in scalar context.

Create a directory from a template. The template must end in X's that are replaced by the
routine.

Returns the name of the temporary directory created. Returns undef on failure.

Directory must be removed by the caller.

Returns a valid temporary filename but does not guarantee that the file will not be opened by
someone else.

Template is the same as that required by mkstemp().

This section describes the re-implementation of the tmpnam() and tmpfile() functions described in
using the mkstemp() from this module.

Unlike the implementations, the directory used for the temporary file is not specified in a
system include file () but simply depends on the choice of tmpdir() returned by .
On some implementations this location can be set using the environment variable, which
may not be secure. If this is a problem, simply use mkstemp() and specify a template.

When called in scalar context, returns the full name (including path) of a temporary file (uses
mktemp()). The only check is that the file does not already exist, but there is no guarantee that
that condition will continue to apply.

When called in list context, a filehandle to the open file and a filename are returned. This is
achieved by calling mkstemp() after constructing a suitable template.

Perl version 5.8.6 documentation - File::Temp

Page 5http://perldoc.perl.org

MKTEMP FUNCTIONS

POSIX FUNCTIONS

mkstemp

mkstemps

mkdtemp

mktemp

tmpnam

($fh, $name) = mkstemp($template);

($fh, $name) = mkstemps($template, $suffix);

$tmpdir_name = mkdtemp($template);

$unopened_file = mktemp($template);

$file = tmpnam();

/tmp/temp.XXXX

testhGji_w.dat

POSIX

POSIX
File::Spec

testXXXXXX .dat

P_tmpdir
TMPDIR

If possible, this form should be used to prevent possible race conditions.

See for information on the choice of temporary directory for a particular
operating system.

Returns the filehandle of a temporary file.

The file is removed when the filehandle is closed or when the program exits. No access to the
filename is provided.

If the temporary file can not be created undef is returned. Currently this command will
probably not work when the temporary directory is on an NFS file system.

These functions are provided for backwards compatibility with common tempfile generation C library
functions.

They are not exported and must be addressed using the full package name.

Return the name of a temporary file in the specified directory using a prefix. The file is
guaranteed not to exist at the time the function was called, but such guarantees are good for
one clock tick only. Always use the proper form of with if you
must open such a filename.

Equivalent to running mktemp() with $dir/$prefixXXXXXXXX (using unix file convention as an
example)

Because this function uses mktemp(), it can suffer from race conditions.

Useful functions for dealing with the filehandle and filename.

Given an open filehandle and the associated filename, make a safe unlink. This is achieved by
first checking that the filename and filehandle initially point to the same file and that the
number of links to the file is 1 (all fields returned by stat() are compared). Then the filename is
unlinked and the filehandle checked once again to verify that the number of links on that file is
now 0. This is the closest you can come to making sure that the filename unlinked was the
same as the file whose descriptor you hold.

Returns false on error. The filehandle is not closed since on some occasions this is not
required.

On some platforms, for example Windows NT, it is not possible to unlink an open file (the file
must be closed first). On those platforms, the actual unlinking is deferred until the program
ends and good status is returned. A check is still performed to make sure that the filehandle
and filename are pointing to the same thing (but not at the time the end block is executed
since the deferred removal may not have access to the filehandle).

Additionally, on Windows NT not all the fields returned by stat() can be compared. For
example, the and fields seem to be different. Also, it seems that the size of the file

Perl version 5.8.6 documentation - File::Temp

Page 6http://perldoc.perl.org

($fh, $file) = tmpnam();

$fh = tmpfile();

$filename = File::Temp::tempnam($dir, $prefix);

unlink0($fh, $path) or die "Error unlinking file $path safely";

"tmpdir" in File::Spec

tmpfile

tempnam

unlink0

ADDITIONAL FUNCTIONS

UTILITY FUNCTIONS

sysopen O_CREAT | O_EXCL

dev rdev

returned by stat() does not always agree, with being more accurate than
, presumably because of caching issues even when using autoflush (this is

usually overcome by waiting a while after writing to the tempfile before attempting to
it).

Finally, on NFS file systems the link count of the file handle does not always go to zero
immediately after unlinking. Currently, this command is expected to fail on NFS disks.

Compare of filehandle with of provided filename. This can be used to check that
the filename and filehandle initially point to the same file and that the number of links to the file
is 1 (all fields returned by stat() are compared).

Returns false if the stat information differs or if the link count is greater than 1.

On certain platofms, eg Windows, not all the fields returned by stat() can be compared. For
example, the and fields seem to be different in Windows. Also, it seems that the
size of the file returned by stat() does not always agree, with being more accurate
than , presumably because of caching issues even when using autoflush
(this is usually overcome by waiting a while after writing to the tempfile before attempting to

it).

Not exported by default.

Similar to except after file comparison using cmpstat, the filehandle is closed prior to
attempting to unlink the file. This allows the file to be removed without using an END block, but
does mean that the post-unlink comparison of the filehandle state provided by is not
available.

Usually called from the object destructor when using the OO interface.

Not exported by default.

These functions control the global state of the package.

Controls the lengths to which the module will go to check the safety of the temporary file or
directory before proceeding. Options are:

STANDARD

Do the basic security measures to ensure the directory exists and is writable,
that the umask() is fixed before opening of the file, that temporary files are
opened only if they do not already exist, and that possible race conditions are
avoided. Finally the function is used to remove files safely.

MEDIUM

In addition to the STANDARD security, the output directory is checked to make
sure that it is owned either by root or the user running the program. If the
directory is writable by group or by other, it is then checked to make sure that
the sticky bit is set.

Will not work on platforms that do not support the test for sticky bit.

HIGH

In addition to the MEDIUM security checks, also check for the possibility of

Perl version 5.8.6 documentation - File::Temp

Page 7http://perldoc.perl.org

stat(FH)
stat(filename)

unlink0

stat stat

dev rdev
stat(FH)

stat(filename)

unlink0

unlink0

unlink0

-k

cmpstat

unlink1

safe_level

cmpstat($fh, $path) or die "Error comparing handle with file";

unlink1($fh, $path) or die "Error closing and unlinking file";

PACKAGE VARIABLES

unlink0

``chown() giveaway'' using the sysconf() function. If this is a possibility,
each directory in the path is checked in turn for safeness, recursively walking
back to the root directory.

For platforms that do not support the
symbol (for example, Windows NT) it is assumed that ``chown() giveaway'' is
possible and the recursive test is performed.

The level can be changed as follows:

The level constants are not exported by the module.

Currently, you must be running at least perl v5.6.0 in order to run with MEDIUM or HIGH
security. This is simply because the safety tests use functions from that are not available
in older versions of perl. The problem is that the version number for Fcntl is the same in perl
5.6.0 and in 5.005_03 even though they are different versions.

On systems that do not support the HIGH or MEDIUM safety levels (for example Win NT or
OS/2) any attempt to change the level will be ignored. The decision to ignore rather than raise
an exception allows portable programs to be written with high security in mind for the systems
that can support this without those programs failing on systems where the extra tests are
irrelevant.

If you really need to see whether the change has been accepted simply examine the return
value of .

TopSystemUID

This is the highest UID on the current system that refers to a root UID. This is used to make
sure that the temporary directory is owned by a system UID (, , etc) rather than
simply by root.

This is required since on many unix systems is not owned by root.

Default is to assume that any UID less than or equal to 10 is a root UID.

This value can be adjusted to reduce security checking if required. The value is only relevant
when is set to MEDIUM or higher.

For maximum security, endeavour always to avoid ever looking at, touching, or even imputing the
existence of the filename. You do not know that that filename is connected to the same file as the
handle you have, and attempts to check this can only trigger more race conditions. It's far more
secure to use the filehandle alone and dispense with the filename altogether.

If you need to pass the handle to something that expects a filename then, on a unix system, use
for arbitrary programs, or more generally

for Perl programs. You will have to clear the close-on-exec bit on that file descriptor before passing it
to another process.

Perl version 5.8.6 documentation - File::Temp

Page 8http://perldoc.perl.org

POSIX

POSIX

Fcntl

_PC_CHOWN_RESTRICTED

safe_level

root bin sys

/tmp

safe_level

"/dev/fd/" . fileno($fh) "+<=&" . fileno($fh)

File::Temp->safe_level(File::Temp::HIGH);

$newlevel = File::Temp->safe_level(File::Temp::HIGH);
die "Could not change to high security"

if $newlevel != File::Temp::HIGH;

File::Temp->top_system_uid(10);
my $topid = File::Temp->top_system_uid;

use Fcntl qw/F_SETFD F_GETFD/;
fcntl($tmpfh, F_SETFD, 0)

or die "Can’t clear close-on-exec flag on temp fh: $!\n";

WARNING

Some problems are associated with using temporary files that reside on NFS file systems and it is
recommended that a local filesystem is used whenever possible. Some of the security tests will most
probably fail when the temp file is not local. Additionally, be aware that the performance of I/O
operations over NFS will not be as good as for a local disk.

Originally began life in May 1999 as an XS interface to the system mkstemp() function. In March
2000, the OpenBSD mkstemp() code was translated to Perl for total control of the code's security
checking, to ensure the presence of the function regardless of operating system and to help with
portability.

, , ,

See and for different implementations of temporary file handling.

Tim Jenness <tjenness@cpan.org>

Copyright (C) 1999-2003 Tim Jenness and the UK Particle Physics and Astronomy Research Council.
All Rights Reserved. This program is free software; you can redistribute it and/or modify it under the
same terms as Perl itself.

Original Perl implementation loosely based on the OpenBSD C code for mkstemp(). Thanks to Tom
Christiansen for suggesting that this module should be written and providing ideas for code
improvements and security enhancements.

Perl version 5.8.6 documentation - File::Temp

Page 9http://perldoc.perl.org

Temporary files and NFS

HISTORY

SEE ALSO

AUTHOR

"tmpnam" in POSIX "tmpfile" in POSIX File::Spec File::Path

IO::File File::MkTemp

