
Math::BigInt - Arbitrary size integer math package

Perl version 5.8.6 documentation - Math::BigInt

Page 1http://perldoc.perl.org

NAME

SYNOPSIS
use Math::BigInt;

or make it faster: install (optional) Math::BigInt::GMP
and always use (it will fall back to pure Perl if the
GMP library is not installed):

use Math::BigInt lib => ’GMP’;

my $str = ’1234567890’;
my @values = (64,74,18);
my $n = 1; my $sign = ’-’;

Number creation
$x = Math::BigInt->new($str); # defaults to 0
$y = $x->copy(); # make a true copy
$nan = Math::BigInt->bnan(); # create a NotANumber
$zero = Math::BigInt->bzero(); # create a +0
$inf = Math::BigInt->binf(); # create a +inf
$inf = Math::BigInt->binf(’-’); # create a -inf
$one = Math::BigInt->bone(); # create a +1
$one = Math::BigInt->bone(’-’); # create a -1

Testing (don’t modify their arguments)
(return true if the condition is met, otherwise false)

$x->is_zero(); # if $x is +0
$x->is_nan(); # if $x is NaN
$x->is_one(); # if $x is +1
$x->is_one(’-’); # if $x is -1
$x->is_odd(); # if $x is odd
$x->is_even(); # if $x is even
$x->is_pos(); # if $x >= 0
$x->is_neg(); # if $x < 0
$x->is_inf($sign); # if $x is +inf, or -inf (sign is default ’+’)
$x->is_int(); # if $x is an integer (not a float)

comparing and digit/sign extration
$x->bcmp($y); # compare numbers (undef,<0,=0,>0)
$x->bacmp($y); # compare absolutely (undef,<0,=0,>0)
$x->sign(); # return the sign, either +,- or NaN
$x->digit($n); # return the nth digit, counting from right
$x->digit(-$n); # return the nth digit, counting from left

The following all modify their first argument. If you want to preserve
$x, use $z = $x->copy()->bXXX($y); See under L<CAVEATS> for why this is
neccessary when mixing $a = $b assigments with non-overloaded math.

$x->bzero(); # set $x to 0

Perl version 5.8.6 documentation - Math::BigInt

Page 2http://perldoc.perl.org

$x->bnan(); # set $x to NaN
$x->bone(); # set $x to +1
$x->bone(’-’); # set $x to -1
$x->binf(); # set $x to inf
$x->binf(’-’); # set $x to -inf

$x->bneg(); # negation
$x->babs(); # absolute value
$x->bnorm(); # normalize (no-op in BigInt)
$x->bnot(); # two’s complement (bit wise not)
$x->binc(); # increment $x by 1
$x->bdec(); # decrement $x by 1

$x->badd($y); # addition (add $y to $x)
$x->bsub($y); # subtraction (subtract $y from $x)
$x->bmul($y); # multiplication (multiply $x by $y)
$x->bdiv($y); # divide, set $x to quotient
return (quo,rem) or quo if scalar

$x->bmod($y); # modulus (x % y)
$x->bmodpow($exp,$mod); # modular exponentation (($num**$exp) % $mod))
$x->bmodinv($mod); # the inverse of $x in the given modulus $mod

$x->bpow($y); # power of arguments (x ** y)
$x->blsft($y); # left shift
$x->brsft($y); # right shift
$x->blsft($y,$n); # left shift, by base $n (like 10)
$x->brsft($y,$n); # right shift, by base $n (like 10)

$x->band($y); # bitwise and
$x->bior($y); # bitwise inclusive or
$x->bxor($y); # bitwise exclusive or
$x->bnot(); # bitwise not (two’s complement)

$x->bsqrt(); # calculate square-root
$x->broot($y); # $y’th root of $x (e.g. $y == 3 => cubic root)
$x->bfac(); # factorial of $x (1*2*3*4*..$x)

$x->round($A,$P,$mode); # round to accuracy or precision using mode
$mode
$x->bround($n); # accuracy: preserve $n digits
$x->bfround($n); # round to $nth digit, no-op for BigInts

The following do not modify their arguments in BigInt (are no-ops),
but do so in BigFloat:

$x->bfloor(); # return integer less or equal than $x
$x->bceil(); # return integer greater or equal than $x

The following do not modify their arguments:

greatest common divisor (no OO style)

All operators (inlcuding basic math operations) are overloaded if you declare your big integers as

Operations with overloaded operators preserve the arguments which is exactly what you expect.

Input

Input values to these routines may be any string, that looks like a number and results in an
integer, including hexadecimal and binary numbers.

Scalars holding numbers may also be passed, but note that non-integer numbers may already
have lost precision due to the conversation to float. Quote your input if you want BigInt to see all
the digits:

You can include one underscore between any two digits.

This means integer values like 1.01E2 or even 1000E-2 are also accepted. Non-integer values
result in NaN.

Currently, Math::BigInt::new() defaults to 0, while Math::BigInt::new('') results in 'NaN'. This might

Perl version 5.8.6 documentation - Math::BigInt

Page 3http://perldoc.perl.org

my $gcd = Math::BigInt::bgcd(@values);
lowest common multiplicator (no OO style)
my $lcm = Math::BigInt::blcm(@values);

$x->length(); # return number of digits in number
($xl,$f) = $x->length(); # length of number and length of fraction part,

latter is always 0 digits long for BigInt’s

$x->exponent(); # return exponent as BigInt
$x->mantissa(); # return (signed) mantissa as BigInt
$x->parts(); # return (mantissa,exponent) as BigInt
$x->copy(); # make a true copy of $x (unlike $y = $x;)
$x->as_int(); # return as BigInt (in BigInt: same as copy())
$x->numify(); # return as scalar (might overflow!)

conversation to string (do not modify their argument)
$x->bstr(); # normalized string
$x->bsstr(); # normalized string in scientific notation
$x->as_hex(); # as signed hexadecimal string with prefixed 0x
$x->as_bin(); # as signed binary string with prefixed 0b

precision and accuracy (see section about rounding for more)
$x->precision(); # return P of $x (or global, if P of $x undef)
$x->precision($n); # set P of $x to $n
$x->accuracy(); # return A of $x (or global, if A of $x undef)
$x->accuracy($n); # set A $x to $n

Global methods
Math::BigInt->precision(); # get/set global P for all BigInt objects
Math::BigInt->accuracy(); # get/set global A for all BigInt objects
Math::BigInt->config(); # return hash containing configuration

$i = new Math::BigInt ’123_456_789_123_456_789’;

$x = Math::BigInt->new(12345678890123456789); # bad
$x = Math::BigInt->new(’12345678901234567890’); # good

DESCRIPTION

change in the future, so use always the following explicit forms to get a zero or NaN:

on a BigInt object is now effectively a no-op, since the numbers are always stored in
normalized form. If passed a string, creates a BigInt object from the input.

Output

Output values are BigInt objects (normalized), except for bstr(), which returns a string in
normalized form. Some routines (, , , ,)
return true or false, while others (,) return either undef, <0, 0 or >0 and are
suited for sort.

Each of the methods below (except config(), accuracy() and precision()) accepts three additional
parameters. These arguments $A, $P and $R are accuracy, precision and round_mode. Please see
the section about for more information.

Returns a hash containing the configuration, e.g. the version number, lib loaded etc. The following
hash keys are currently filled in with the appropriate information.

Perl version 5.8.6 documentation - Math::BigInt

Page 4http://perldoc.perl.org

$zero = Math::BigInt->bzero();
$nan = Math::BigInt->bnan();

use Data::Dumper;

print Dumper (Math::BigInt->config());
print Math::BigInt->config()->{lib},"\n";

key Description
Example

==
lib Name of the low-level math library
Math::BigInt::Calc

lib_version Version of low-level math library (see ’lib’)
0.30

class The class name of config() you just called
Math::BigInt

upgrade To which class math operations might be upgraded
Math::BigFloat

downgrade To which class math operations might be downgraded
undef

precision Global precision
undef

accuracy Global accuracy
undef

round_mode Global round mode
even

version version number of the class you used
1.61

div_scale Fallback acccuracy for div
40

trap_nan If true, traps creation of NaN via croak()
1

trap_inf If true, traps creation of +inf/-inf via croak()
1

bnorm()

is_odd() is_even() is_zero() is_one() is_nan()
bcmp() bacmp()

METHODS

ACCURACY and PRECISION

config

The following values can be set by passing a reference to a hash:

Example:

Set or get the global or local accuracy, aka how many significant digits the results have.

Please see the section about for further details.

Value must be greater than zero. Pass an undef value to disable it:

Returns the current accuracy. For accuracy()> it will return either the local accuracy, or if not
defined, the global. This means the return value represents the accuracy that will be in effect for $x:

Note: Works also for subclasses like Math::BigFloat. Each class has it's own globals separated from
Math::BigInt, but it is possible to subclass Math::BigInt and make the globals of the subclass aliases
to the ones from Math::BigInt.

Set or get the global or local precision, aka how many digits the result has after the dot (or where to
round it when passing a positive number). In Math::BigInt, passing a negative number precision has
no effect since no numbers have digits after the dot.

Please see the section about for further details.

Value must be greater than zero. Pass an undef value to disable it:

Perl version 5.8.6 documentation - Math::BigInt

Page 5http://perldoc.perl.org

config()

$x-

trap_inf trap_nan
upgrade downgrade precision accuracy round_mode div_scale

$new_cfg = Math::BigInt->config({ trap_inf => 1, precision => 5 });

$x->accuracy(5); # local for $x
CLASS->accuracy(5); # global for all members of CLASS
$A = $x->accuracy(); # read out
$A = CLASS->accuracy(); # read out

$x->accuracy(undef);
Math::BigInt->accuracy(undef);

$y = Math::BigInt->new(1234567); # unrounded
print Math::BigInt->accuracy(4),"\n"; # set 4, print 4
$x = Math::BigInt->new(123456); # will be automatically rounded
print "$x $y\n"; # ’123500 1234567’
print $x->accuracy(),"\n"; # will be 4
print $y->accuracy(),"\n"; # also 4, since global is 4
print Math::BigInt->accuracy(5),"\n"; # set to 5, print 5
print $x->accuracy(),"\n"; # still 4
print $y->accuracy(),"\n"; # 5, since global is 5

$x->precision(-2); # local for $x, round right of the dot
$x->precision(2); # ditto, but round left of the dot
CLASS->accuracy(5); # global for all members of CLASS
CLASS->precision(-5); # ditto
$P = CLASS->precision(); # read out
$P = $x->precision(); # read out

accuracy

precision

ACCURACY AND PRECISION

ACCURACY AND PRECISION

Returns the current precision. For precision()> it will return either the local precision of $x, or if not
defined, the global. This means the return value represents the accuracy that will be in effect for $x:

Note: Works also for subclasses like Math::BigFloat. Each class has it's own globals separated from
Math::BigInt, but it is possible to subclass Math::BigInt and make the globals of the subclass aliases
to the ones from Math::BigInt.

Shifts $x right by $y in base $n. Default is base 2, used are usually 10 and 2, but others work, too.

Right shifting usually amounts to dividing $x by $n ** $y and truncating the result:

There is one exception, and that is base 2 with negative $x:

This will print -3, not -2 (as it would if you divide -5 by 2 and truncate the result).

Creates a new BigInt object from a scalar or another BigInt object. The input is accepted as decimal,
hex (with leading '0x') or binary (with leading '0b').

See for more info on accepted input formats.

Creates a new BigInt object representing NaN (Not A Number). If used on an object, it will set it to
NaN:

Creates a new BigInt object representing zero. If used on an object, it will set it to zero:

Perl version 5.8.6 documentation - Math::BigInt

Page 6http://perldoc.perl.org

$x->precision(undef);
Math::BigInt->precision(undef);

$y = Math::BigInt->new(1234567); # unrounded
print Math::BigInt->precision(4),"\n"; # set 4, print 4
$x = Math::BigInt->new(123456); # will be automatically rounded

$x->brsft($y,$n);

$x = Math::BigInt->new(10);
$x->brsft(1); # same as $x >> 1: 5
$x = Math::BigInt->new(1234);
$x->brsft(2,10); # result 12

$x = Math::BigInt->new(-5);
print $x->brsft(1);

$x = Math::BigInt->new($str,$A,$P,$R);

$x = Math::BigInt->bnan();

$x->bnan();

$x = Math::BigInt->bzero();

$x->bzero();

$x-

brsft

new

bnan

bzero

Input

Creates a new BigInt object representing infinity. The optional argument is either '-' or '+', indicating
whether you want infinity or minus infinity. If used on an object, it will set it to infinity:

Creates a new BigInt object representing one. The optional argument is either '-' or '+', indicating
whether you want one or minus one. If used on an object, it will set it to one:

These methods all test the BigInt for beeing one specific value and return true or false depending on
the input. These are faster than doing something like:

The methods return true if the argument is positive or negative, respectively. is neither positive
nor negative, while counts as positive, and is negative. A is positive.

These methods are only testing the sign, and not the value.

and are aliase to and , respectively.
and were introduced in v1.36, while and

were only introduced in v1.68.

The return true when the argument satisfies the condition. , , are not integers and are
neither odd nor even.

Perl version 5.8.6 documentation - Math::BigInt

Page 7http://perldoc.perl.org

$x = Math::BigInt->binf($sign);

$x->binf();
$x->binf(’-’);

$x = Math::BigInt->binf($sign);

$x->bone(); # +1
$x->bone(’-’); # -1

$x->is_zero(); # true if arg is +0
$x->is_nan(); # true if arg is NaN
$x->is_one(); # true if arg is +1
$x->is_one(’-’); # true if arg is -1
$x->is_inf(); # true if +inf
$x->is_inf(’-’); # true if -inf (sign is default ’+’)

if ($x == 0)

$x->is_pos(); # true if >= 0
$x->is_neg(); # true if < 0

$x->is_odd(); # true if odd, false for even
$x->is_even(); # true if even, false for odd
$x->is_int(); # true if $x is an integer

binf

bone

is_one()/is_zero()/is_nan()/is_inf()

is_pos()/is_neg()

is_odd()/is_even()/is_int()

NaN
+inf -inf zero

is_positive() is_negative() is_pos() is_neg()
is_positive() is_negative() is_pos() is_neg()

NaN +inf -inf

In BigInt, all numbers except , and are integers.

Compares $x with $y and takes the sign into account. Returns -1, 0, 1 or undef.

Compares $x with $y while ignoring their. Returns -1, 0, 1 or undef.

Return the sign, of $x, meaning either , , , or NaN.

If is negative, returns the digit counting from left.

Negate the number, e.g. change the sign between '+' and '-', or between '+inf' and '-inf', respectively.
Does nothing for NaN or zero.

Set the number to it's absolute value, e.g. change the sign from '-' to '+' and from '-inf' to '+inf',
respectively. Does nothing for NaN or positive numbers.

Two's complement (bit wise not). This is equivalent to

but faster.

Perl version 5.8.6 documentation - Math::BigInt

Page 8http://perldoc.perl.org

NaN +inf -inf

+ - -inf +inf

$n

bcmp

bacmp

sign

digit

bneg

babs

bnorm

bnot

binc

bdec

$x->bcmp($y);

$x->bacmp($y);

$x->sign();

$x->digit($n); # return the nth digit, counting from right

$x->bneg();

$x->babs();

$x->bnorm(); # normalize (no-op)

$x->bnot();

$x->binc()->bneg();

$x->binc(); # increment x by 1

$x->bdec(); # decrement x by 1

Returns the inverse of in the given modulus . ' ' is returned unless is relatively
prime to , i.e. unless .

Returns the value of taken to the power in the modulus using binary exponentation.
is far superior to writing

because it is much faster - it reduces internal variables into the modulus whenever possible, so it
operates on smaller numbers.

also supports negative exponents.

is exactly equivalent to

Perl version 5.8.6 documentation - Math::BigInt

Page 9http://perldoc.perl.org

$x->badd($y); # addition (add $y to $x)

$x->bsub($y); # subtraction (subtract $y from $x)

$x->bmul($y); # multiplication (multiply $x by $y)

$x->bdiv($y); # divide, set $x to quotient
return (quo,rem) or quo if scalar

$x->bmod($y); # modulus (x % y)

num->bmodinv($mod); # modular inverse

$num->bmodpow($exp,$mod); # modular exponentation
($num**$exp % $mod)

$num ** $exp % $mod

bmodpow($num, -1, $mod)

bmodinv($num, $mod)

$x->bpow($y); # power of arguments (x ** y)

$x->blsft($y); # left shift
$x->blsft($y,$n); # left shift, in base $n (like 10)

badd

bsub

bmul

bdiv

bmod

bmodinv

bmodpow

bpow

blsft

$num $mod NaN $num
$mod bgcd($num, $mod)==1

$num $exp $mod
bmodpow

bmodpow

Round $x to accuracy or precision using the round mode .

Set $x to the integer less or equal than $x. This is a no-op in BigInt, but does change $x in BigFloat.

Set $x to the integer greater or equal than $x. This is a no-op in BigInt, but does change $x in
BigFloat.

Perl version 5.8.6 documentation - Math::BigInt

Page 10http://perldoc.perl.org

brsft

band

bior

bxor

bnot

bsqrt

bfac

round

bround

bfround

bfloor

bceil

bgcd

$x->brsft($y); # right shift
$x->brsft($y,$n); # right shift, in base $n (like 10)

$x->band($y); # bitwise and

$x->bior($y); # bitwise inclusive or

$x->bxor($y); # bitwise exclusive or

$x->bnot(); # bitwise not (two’s complement)

$x->bsqrt(); # calculate square-root

$x->bfac(); # factorial of $x (1*2*3*4*..$x)

$x->round($A,$P,$round_mode);

$x->bround($N); # accuracy: preserve $N digits

$x->bfround($N); # round to $Nth digit, no-op for BigInts

$x->bfloor();

$x->bceil();

bgcd(@values); # greatest common divisor (no OO style)

$A $P $round_mode

head2 length

Returns the number of digits in the decimal representation of the number. In list context, returns the
length of the integer and fraction part. For BigInt's, the length of the fraction part will always be 0.

Return the exponent of $x as BigInt.

Return the signed mantissa of $x as BigInt.

Returns $x as a BigInt (truncated towards zero). In BigInt this is the same as .

is an alias to this method. was introduced in v1.22, while was
only introduced in v1.68.

Returns a normalized string represantation of .

Perl version 5.8.6 documentation - Math::BigInt

Page 11http://perldoc.perl.org

blcm

exponent

mantissa

parts

copy

as_int

bstr

bsstr

as_hex

as_bin

blcm(@values); # lowest common multiplicator (no OO style)

$x->length();
($xl,$fl) = $x->length();

$x->exponent();

$x->mantissa();

$x->parts(); # return (mantissa,exponent) as BigInt

$x->copy(); # make a true copy of $x (unlike $y = $x;)

$x->as_int();

$x->bstr();

$x->bsstr(); # normalized string in scientific notation

$x->as_hex(); # as signed hexadecimal string with prefixed 0x

$x->as_bin(); # as signed binary string with prefixed 0b

copy()

as_number() as_number as_int()

$x

Since version v1.33, Math::BigInt and Math::BigFloat have full support for accuracy and precision
based rounding, both automatically after every operation, as well as manually.

This section describes the accuracy/precision handling in Math::Big* as it used to be and as it is now,
complete with an explanation of all terms and abbreviations.

Not yet implemented things (but with correct description) are marked with '!', things that need to be
answered are marked with '?'.

In the next paragraph follows a short description of terms used here (because these may differ from
terms used by others people or documentation).

During the rest of this document, the shortcuts A (for accuracy), P (for precision), F (fallback) and R
(rounding mode) will be used.

A fixed number of digits before (positive) or after (negative) the decimal point. For example, 123.45
has a precision of -2. 0 means an integer like 123 (or 120). A precision of 2 means two digits to the
left of the decimal point are zero, so 123 with P = 1 becomes 120. Note that numbers with zeros
before the decimal point may have different precisions, because 1200 can have p = 0, 1 or 2
(depending on what the inital value was). It could also have p < 0, when the digits after the decimal
point are zero.

The string output (of floating point numbers) will be padded with zeros:

For BigInts, no padding occurs.

Number of significant digits. Leading zeros are not counted. A number may have an accuracy greater
than the non-zero digits when there are zeros in it or trailing zeros. For example, 123.456 has A of 6,
10203 has 5, 123.0506 has 7, 123.450000 has 8 and 0.000123 has 3.

The string output (of floating point numbers) will be padded with zeros:

For BigInts, no padding occurs.

When both A and P are undefined, this is used as a fallback accuracy when dividing numbers.

Perl version 5.8.6 documentation - Math::BigInt

Page 12http://perldoc.perl.org

ACCURACY and PRECISION

Precision P

Accuracy A

Fallback F

Initial value P A Result String
--
1234.01 -3 1000 1000
1234 -2 1200 1200
1234.5 -1 1230 1230
1234.001 1 1234 1234.0
1234.01 0 1234 1234
1234.01 2 1234.01 1234.01
1234.01 5 1234.01 1234.01000

Initial value P A Result String
--
1234.01 3 1230 1230
1234.01 6 1234.01 1234.01
1234.1 8 1234.1 1234.1000

When rounding a number, different 'styles' or 'kinds' of rounding are possible. (Note that random
rounding, as in Math::Round, is not implemented.)

'trunc'

truncation invariably removes all digits following the rounding place, replacing them with zeros.
Thus, 987.65 rounded to tens (P=1) becomes 980, and rounded to the fourth sigdig becomes
987.6 (A=4). 123.456 rounded to the second place after the decimal point (P=-2) becomes
123.46.

All other implemented styles of rounding attempt to round to the "nearest digit." If the digit D
immediately to the right of the rounding place (skipping the decimal point) is greater than 5, the
number is incremented at the rounding place (possibly causing a cascade of incrementation): e.g.
when rounding to units, 0.9 rounds to 1, and -19.9 rounds to -20. If D < 5, the number is similarly
truncated at the rounding place: e.g. when rounding to units, 0.4 rounds to 0, and -19.4 rounds to
-19.

However the results of other styles of rounding differ if the digit immediately to the right of the
rounding place (skipping the decimal point) is 5 and if there are no digits, or no digits other than 0,
after that 5. In such cases:

'even'

rounds the digit at the rounding place to 0, 2, 4, 6, or 8 if it is not already. E.g., when rounding to
the first sigdig, 0.45 becomes 0.4, -0.55 becomes -0.6, but 0.4501 becomes 0.5.

'odd'

rounds the digit at the rounding place to 1, 3, 5, 7, or 9 if it is not already. E.g., when rounding to
the first sigdig, 0.45 becomes 0.5, -0.55 becomes -0.5, but 0.5501 becomes 0.6.

'+inf'

round to plus infinity, i.e. always round up. E.g., when rounding to the first sigdig, 0.45 becomes
0.5, -0.55 becomes -0.5, and 0.4501 also becomes 0.5.

'-inf'

round to minus infinity, i.e. always round down. E.g., when rounding to the first sigdig, 0.45
becomes 0.4, -0.55 becomes -0.6, but 0.4501 becomes 0.5.

'zero'

round to zero, i.e. positive numbers down, negative ones up. E.g., when rounding to the first
sigdig, 0.45 becomes 0.4, -0.55 becomes -0.5, but 0.4501 becomes 0.5.

The handling of A & P in MBI/MBF (the old core code shipped with Perl versions <= 5.7.2) is like this:

Precision

Accuracy (significant digits)

Perl version 5.8.6 documentation - Math::BigInt

Page 13http://perldoc.perl.org

Rounding mode R

* ffround($p) is able to round to $p number of digits after the
decimal

point
* otherwise P is unused

* fround($a) rounds to $a significant digits
* only fdiv() and fsqrt() take A as (optional) paramater
+ other operations simply create the same number (fneg etc), or more

(fmul)
of digits

+ rounding/truncating is only done when explicitly calling one of
fround

This is how it works now:

Setting/Accessing

Perl version 5.8.6 documentation - Math::BigInt

Page 14http://perldoc.perl.org

or ffround, and never for BigInt (not implemented)
* fsqrt() simply hands its accuracy argument over to fdiv.
* the documentation and the comment in the code indicate two different

ways
on how fdiv() determines the maximum number of digits it should

calculate,
and the actual code does yet another thing
POD:
max($Math::BigFloat::div_scale,length(dividend)+length(divisor))

Comment:
result has at most max(scale, length(dividend), length(divisor))

digits
Actual code:
scale = max(scale, length(dividend)-1,length(divisor)-1);
scale += length(divisior) - length(dividend);

So for lx = 3, ly = 9, scale = 10, scale will actually be 16
(10+9-3).

Actually, the ’difference’ added to the scale is calculated from the
number of "significant digits" in dividend and divisor, which is

derived
by looking at the length of the mantissa. Which is wrong, since it

includes
the + sign (oops) and actually gets 2 for ’+100’ and 4 for ’+101’.

Oops
again. Thus 124/3 with div_scale=1 will get you ’41.3’ based on the

strange
assumption that 124 has 3 significant digits, while 120/7 will get

you
’17’, not ’17.1’ since 120 is thought to have 2 significant digits.
The rounding after the division then uses the remainder and $y to

determine
wether it must round up or down.

? I have no idea which is the right way. That’s why I used a slightly
more
? simple scheme and tweaked the few failing testcases to match it.

* You can set the A global via C<< Math::BigInt->accuracy() >> or
C<< Math::BigFloat->accuracy() >> or whatever class you are using.

* You can also set P globally by using C<<
Math::SomeClass->precision() >>

likewise.
* Globals are classwide, and not inherited by subclasses.
* to undefine A, use C<< Math::SomeCLass->accuracy(undef); >>
* to undefine P, use C<< Math::SomeClass->precision(undef); >>
* Setting C<< Math::SomeClass->accuracy() >> clears automatically
C<< Math::SomeClass->precision() >>, and vice versa.

* To be valid, A must be > 0, P can have any value.
* If P is negative, this means round to the P’th place to the right of

the
decimal point; positive values mean to the left of the decimal

point.
P of 0 means round to integer.

* to find out the current global A, use C<<

Creating numbers

Usage

Perl version 5.8.6 documentation - Math::BigInt

Page 15http://perldoc.perl.org

Math::SomeClass->accuracy() >>
* to find out the current global P, use C<<

Math::SomeClass->precision() >>
* use C<< $x->accuracy() >> respective C<< $x->precision() >> for the

local
setting of C<< $x >>.

* Please note that C<< $x->accuracy() >> respecive C<< $x->precision()
>>

return eventually defined global A or P, when C<< $x >>’s A or P is
not

set.

* When you create a number, you can give it’s desired A or P via:
$x = Math::BigInt->new($number,$A,$P);

* Only one of A or P can be defined, otherwise the result is NaN
* If no A or P is give ($x = Math::BigInt->new($number) form), then

the
globals (if set) will be used. Thus changing the global defaults

later on
will not change the A or P of previously created numbers (i.e., A

and P of
$x will be what was in effect when $x was created)

* If given undef for A and P, B<no> rounding will occur, and the
globals will

B<not> be used. This is used by subclasses to create numbers without
suffering rounding in the parent. Thus a subclass is able to have

it’s own
globals enforced upon creation of a number by using
C<< $x = Math::BigInt->new($number,undef,undef) >>:

use Math::BigInt::SomeSubclass;
use Math::BigInt;

Math::BigInt->accuracy(2);
Math::BigInt::SomeSubClass->accuracy(3);
$x = Math::BigInt::SomeSubClass->new(1234);

$x is now 1230, and not 1200. A subclass might choose to implement
this otherwise, e.g. falling back to the parent’s A and P.

* If A or P are enabled/defined, they are used to round the result of
each

operation according to the rules below
* Negative P is ignored in Math::BigInt, since BigInts never have

digits
after the decimal point

* Math::BigFloat uses Math::BigInt internally, but setting A or P
inside

Math::BigInt as globals does not tamper with the parts of a
BigFloat.

A flag is used to mark all Math::BigFloat numbers as ’never round’.

Precedence

Perl version 5.8.6 documentation - Math::BigInt

Page 16http://perldoc.perl.org

* It only makes sense that a number has only one of A or P at a time.
If you set either A or P on one object, or globally, the other one

will
be automatically cleared.

* If two objects are involved in an operation, and one of them has A
in

effect, and the other P, this results in an error (NaN).
* A takes precendence over P (Hint: A comes before P).
If neither of them is defined, nothing is used, i.e. the result will

have
as many digits as it can (with an exception for fdiv/fsqrt) and will

not
be rounded.

* There is another setting for fdiv() (and thus for fsqrt()). If
neither of

A or P is defined, fdiv() will use a fallback (F) of $div_scale
digits.

If either the dividend’s or the divisor’s mantissa has more digits
than

the value of F, the higher value will be used instead of F.
This is to limit the digits (A) of the result (just consider what

would
happen with unlimited A and P in the case of 1/3 :-)

* fdiv will calculate (at least) 4 more digits than required
(determined by

A, P or F), and, if F is not used, round the result
(this will still fail in the case of a result like 0.12345000000001

with A
or P of 5, but this can not be helped - or can it?)

* Thus you can have the math done by on Math::Big* class in two modi:
+ never round (this is the default):
This is done by setting A and P to undef. No math operation
will round the result, with fdiv() and fsqrt() as exceptions to

guard
against overflows. You must explicitely call bround(), bfround()

or
round() (the latter with parameters).
Note: Once you have rounded a number, the settings will ’stick’ on

it
and ’infect’ all other numbers engaged in math operations with it,

since
local settings have the highest precedence. So, to get

SaferRound[tm],
use a copy() before rounding like this:

$x = Math::BigFloat->new(12.34);
$y = Math::BigFloat->new(98.76);
$z = $x * $y; # 1218.6984
print $x->copy()->fround(3); # 12.3 (but A is now 3!)
$z = $x * $y; # still 1218.6984,

without
copy would have been

1210!

+ round after each op:

Overriding globals

Local settings

Rounding

Perl version 5.8.6 documentation - Math::BigInt

Page 17http://perldoc.perl.org

After each single operation (except for testing like is_zero()),
the

method round() is called and the result is rounded appropriately.
By

setting proper values for A and P, you can have all-the-same-A or
all-the-same-P modes. For example, Math::Currency might set A to

undef,
and P to -2, globally.

?Maybe an extra option that forbids local A & P settings would be in
order,
?so that intermediate rounding does not ’poison’ further math?

* you will be able to give A, P and R as an argument to all the
calculation

routines; the second parameter is A, the third one is P, and the
fourth is

R (shift right by one for binary operations like badd). P is used
only if

the first parameter (A) is undefined. These three parameters
override the

globals in the order detailed as follows, i.e. the first defined
value

wins:
(local: per object, global: global default, parameter: argument to

sub)
+ parameter A
+ parameter P
+ local A (if defined on both of the operands: smaller one is

taken)
+ local P (if defined on both of the operands: bigger one is

taken)
+ global A
+ global P
+ global F

* fsqrt() will hand its arguments to fdiv(), as it used to, only now
for two

arguments (A and P) instead of one

* You can set A or P locally by using C<< $x->accuracy() >> or
C<< $x->precision() >>
and thus force different A and P for different objects/numbers.

* Setting A or P this way immediately rounds $x to the new value.
* C<< $x->accuracy() >> clears C<< $x->precision() >>, and vice versa.

* the rounding routines will use the respective global or local
settings.

fround()/bround() is for accuracy rounding, while
ffround()/bfround()

is for precision
* the two rounding functions take as the second parameter one of the

Default values

Remarks

The actual numbers are stored as unsigned big integers (with seperate sign). You should neither care
about nor depend on the internal representation; it might change without notice. Use only method
calls like instead relying on the internal hash keys like in .

Math with the numbers is done (by default) by a module called . This is
equivalent to saying:

You can change this by using:

The following would first try to find Math::BigInt::Foo, then Math::BigInt::Bar, and when this also fails,

Perl version 5.8.6 documentation - Math::BigInt

Page 18http://perldoc.perl.org

following rounding modes (R):
’even’, ’odd’, ’+inf’, ’-inf’, ’zero’, ’trunc’

* you can set/get the global R by using C<<
Math::SomeClass->round_mode() >>

or by setting C<< $Math::SomeClass::round_mode >>
* after each operation, C<< $result->round() >> is called, and the

result may
eventually be rounded (that is, if A or P were set either locally,
globally or as parameter to the operation)

* to manually round a number, call C<< $x->round($A,$P,$round_mode);
>>

this will round the number by using the appropriate rounding
function

and then normalize it.
* rounding modifies the local settings of the number:

$x = Math::BigFloat->new(123.456);
$x->accuracy(5);
$x->bround(4);

Here 4 takes precedence over 5, so 123.5 is the result and
$x->accuracy()

will be 4 from now on.

* R: ’even’
* F: 40
* A: undef
* P: undef

* The defaults are set up so that the new code gives the same results
as

the old code (except in a few cases on fdiv):
+ Both A and P are undefined and thus will not be used for rounding
after each operation.

+ round() is thus a no-op, unless given extra parameters A and P

use Math::BigInt lib => ’Calc’;

use Math::BigInt lib => ’BitVect’;

INTERNALS

$x->sign(); $x->{sign};

Math::BigInt::Calc

MATH LIBRARY

revert to Math::BigInt::Calc:

Since Math::BigInt::GMP is in almost all cases faster than Calc (especially in cases involving really big
numbers, where it is faster), and there is no penalty if Math::BigInt::GMP is not installed, it is a
good idea to always use the following:

Different low-level libraries use different formats to store the numbers. You should not depend on the
number having a specific format.

See the respective math library module documentation for further details.

The sign is either '+', '-', 'NaN', '+inf' or '-inf' and stored seperately.

A sign of 'NaN' is used to represent the result when input arguments are not numbers or as a result of
0/0. '+inf' and '-inf' represent plus respectively minus infinity. You will get '+inf' when dividing a positive
number by 0, and '-inf' when dividing any negative number by 0.

and return the said parts of the BigInt such that:

is just a shortcut that gives you both of them in one go. Both the returned
mantissa and exponent have a sign.

Currently, for BigInts is always 0, except for NaN, +inf and -inf, where it is ; and for ,
where it is (to be compatible with Math::BigFloat's internal representation of a zero as).

is currently just a copy of the original number. The relation between and will stay always the
same, though their real values might change.

Perl version 5.8.6 documentation - Math::BigInt

Page 19http://perldoc.perl.org

use Math::BigInt lib => ’Foo,Math::BigInt::Bar’;

use Math::BigInt lib => ’GMP’;

$m = $x->mantissa();
$e = $x->exponent();
$y = $m * (10 ** $e);
print "ok\n" if $x == $y;

use Math::BigInt;

sub bint { Math::BigInt->new(shift); }

$x = Math::BigInt->bstr("1234") # string "1234"
$x = "$x"; # same as bstr()
$x = Math::BigInt->bneg("1234"); # BigInt "-1234"
$x = Math::BigInt->babs("-12345"); # BigInt "12345"
$x = Math::BigInt->bnorm("-0 00"); # BigInt "0"
$x = bint(1) + bint(2); # BigInt "3"
$x = bint(1) + "2"; # ditto (auto-BigIntify of "2")
$x = bint(1); # BigInt "1"
$x = $x + 5 / 2; # BigInt "3"
$x = $x ** 3; # BigInt "27"
$x *= 2; # BigInt "54"
$x = Math::BigInt->new(0); # BigInt "0"

much

SIGN

mantissa(), exponent() and parts()
mantissa() exponent()

($m,$e) = $x->parts()

$e NaN $x == 0
1 0E1

$m $e $m

EXAMPLES

Examples for rounding:

Examples for converting:

After all the decimal, hexadecimal and binary
constants in the given scope are converted to . This conversion happens at compile
time.

In particular,

prints the integer value of . Note that without conversion of constants the expression 2**100
will be calculated as perl scalar.

Please note that strings and floating point constants are not affected, so that

do not work. You need an explicit Math::BigInt->new() around one of the operands. You should also

Perl version 5.8.6 documentation - Math::BigInt

Page 20http://perldoc.perl.org

$x--; # BigInt "-1"
$x = Math::BigInt->badd(4,5) # BigInt "9"
print $x->bsstr(); # 9e+0

use Math::BigFloat;
use Test;

$x = Math::BigFloat->new(123.4567);
$y = Math::BigFloat->new(123.456789);
Math::BigFloat->accuracy(4); # no more A than 4

ok ($x->copy()->fround(),123.4); # even rounding
print $x->copy()->fround(),"\n"; # 123.4
Math::BigFloat->round_mode(’odd’); # round to odd
print $x->copy()->fround(),"\n"; # 123.5
Math::BigFloat->accuracy(5); # no more A than 5
Math::BigFloat->round_mode(’odd’); # round to odd
print $x->copy()->fround(),"\n"; # 123.46
$y = $x->copy()->fround(4),"\n"; # A = 4: 123.4
print "$y, ",$y->accuracy(),"\n"; # 123.4, 4

Math::BigFloat->accuracy(undef); # A not important now
Math::BigFloat->precision(2); # P important
print $x->copy()->bnorm(),"\n"; # 123.46
print $x->copy()->fround(),"\n"; # 123.46

my $x = Math::BigInt->new(’0b1’.’01’ x 123);
print "bin: ",$x->as_bin()," hex:",$x->as_hex()," dec: ",$x,"\n";

perl -MMath::BigInt=:constant -e ’print 2**100,"\n"’

use Math::BigInt qw/:constant/;

$x = 1234567890123456789012345678901234567890
+ 123456789123456789;
$y = ’1234567890123456789012345678901234567890’
+ ’123456789123456789’;

Autocreating constants
use Math::BigInt ’:constant’

Math::BigInt

2**100

integer

quote large constants to protect loss of precision:

Without the quotes Perl would convert the large number to a floating point constant at compile time
and then hand the result to BigInt, which results in an truncated result or a NaN.

This also applies to integers that look like floating point constants:

will print nothing but newlines. Use either or to get this to work.

Using the form $x += $y; etc over $x = $x + $y is faster, since a copy of $x must be made in the
second case. For long numbers, the copy can eat up to 20% of the work (in the case of
addition/subtraction, less for multiplication/division). If $y is very small compared to $x, the form $x +=
$y is MUCH faster than $x = $x + $y since making the copy of $x takes more time then the actual
addition.

With a technique called copy-on-write, the cost of copying with overload could be minimized or even
completely avoided. A test implementation of COW did show performance gains for overloaded math,
but introduced a performance loss due to a constant overhead for all other operatons. So Math::BigInt
does currently not COW.

The rewritten version of this module (vs. v0.01) is slower on certain operations, like ,
and . The reason are that it does now more work and handles much more cases. The time
spent in these operations is usually gained in the other math operations so that code on the average
should get (much) faster. If they don't, please contact the author.

Some operations may be slower for small numbers, but are significantly faster for big numbers. Other
operations are now constant (O(1), like , etc), instead of O(N) and thus nearly always
take much less time. These optimizations were done on purpose.

If you find the Calc module to slow, try to install any of the replacement modules and see if they help
you.

You can use an alternative library to drive Math::BigInt via:

See for more information.

For more benchmark results see .

The basic design of Math::BigInt allows simple subclasses with very little work, as long as a few
simple rules are followed:

The public API must remain consistent, i.e. if a sub-class is overloading addition, the sub-class

Perl version 5.8.6 documentation - Math::BigInt

Page 21http://perldoc.perl.org

use Math::BigInt;

$x = Math::BigInt->new(’1234567889123456789123456789123456789’);

use Math::BigInt ’:constant’;

print ref(123e2),"\n";
print ref(123.2e2),"\n";

use Math::BigInt lib => ’Module’;

bignum Math::BigFloat

MATH LIBRARY

http://bloodgate.com/perl/benchmarks.html

PERFORMANCE

Subclassing Math::BigInt

new() bstr()
numify()

bneg() babs()

Alternative math libraries

SUBCLASSING

must use the same name, in this case badd(). The reason for this is that Math::BigInt is optimized
to call the object methods directly.

The private object hash keys like {sign}> may not be changed, but additional keys can be
added, like {_custom}>.

Accessor functions are available for all existing object hash keys and should be used instead of
directly accessing the internal hash keys. The reason for this is that Math::BigInt itself has a
pluggable interface which permits it to support different storage methods.

More complex sub-classes may have to replicate more of the logic internal of Math::BigInt if they need
to change more basic behaviors. A subclass that needs to merely change the output only needs to
overload .

All other object methods and overloaded functions can be directly inherited from the parent class.

At the very minimum, any subclass will need to provide it's own and can store additional hash
keys in the object. There are also some package globals that must be defined, e.g.:

Additionally, you might want to provide the following two globals to allow auto-upgrading and
auto-downgrading to work correctly:

This allows Math::BigInt to correctly retrieve package globals from the subclass, like
. See t/Math/BigInt/Subclass.pm or t/Math/BigFloat/SubClass.pm

completely functional subclass examples.

Don't forget to

in your subclass to automatically inherit the overloading from the parent. If you like, you can change
part of the overloading, look at Math::String for an example.

When used like this:

certain operations will 'upgrade' their calculation and thus the result to the class Foo::Bar. Usually this
is used in conjunction with Math::BigFloat:

As a shortcut, you can use the module :

Also good for oneliners:

Perl version 5.8.6 documentation - Math::BigInt

Page 22http://perldoc.perl.org

$x-
$x-

bstr()

new()

$SubClass::precision

bignum

Globals
$accuracy = undef;
$precision = -2; # round to 2 decimal places
$round_mode = ’even’;
$div_scale = 40;

$upgrade = undef;
$downgrade = undef;

use overload;

use Math::BigInt upgrade => ’Foo::Bar’;

use Math::BigInt upgrade => ’Math::BigFloat’;

use bignum;

UPGRADING

This makes it possible to mix arguments of different classes (as in 2.5 + 2) as well es preserve
accuracy (as in sqrt(3)).

Beware: This feature is not fully implemented yet.

The following methods upgrade themselves unconditionally; that is if upgrade is in effect, they will
always hand up their work:

bsqrt()

div()

blog()

Beware: This list is not complete.

All other methods upgrade themselves only when one (or all) of their arguments are of the class
mentioned in $upgrade (This might change in later versions to a more sophisticated scheme):

broot() does not work

The broot() function in BigInt may only work for small values. This will be fixed in a later version.

Out of Memory!

Under Perl prior to 5.6.0 having an and in your
code will crash with "Out of memory". This is probably an overload/exporter bug. You can
workaround by not having and ':constant' at the same time or upgrade your Perl to a
newer version.

Fails to load Calc on Perl prior 5.6.0

Since eval(' use ...') can not be used in conjunction with ':constant', BigInt will fall back to eval {
require ... } when loading the math lib on Perls prior to 5.6.0. This simple replaces '::' with '/' and
thus might fail on filesystems using a different seperator.

Some things might not work as you expect them. Below is documented what is known to be
troublesome:

bstr(), bsstr() and 'cmp'

Both and as well as automated stringify via overload now drop the leading '+'.
The old code would return '+3', the new returns '3'. This is to be consistent with Perl and to make

(especially with overloading) to work as you expect. It also solves problems with ,
because it's uses 'eq' internally.

Mark Biggar said, when asked about to drop the '+' altogether, or make only work:

So, the following examples will now work all as expected:

Perl version 5.8.6 documentation - Math::BigInt

Page 23http://perldoc.perl.org

perl -Mbignum -le ’print 2 ** 255’

I agree (with the first alternative), don’t add the ’+’ on positive
numbers. It’s not as important anymore with the new internal
form for numbers. It made doing things like abs and neg easier,
but those have to be done differently now anyway.

use Test;
BEGIN { plan tests => 1 }

use Math::BigInt;

Auto-upgrade

BUGS

CAVEATS

use Math::BigInt ’:constant’; eval()

eval()

bstr() bsstr()

cmp Test.pm
ok()

cmp

Additionally, the following still works:

There is now a method to get the string in scientific notation aka instead of . Be
advised that overloaded 'eq' always uses bstr() for comparisation, but Perl will represent some
numbers as 100 and others as 1e+308. If in doubt, convert both arguments to Math::BigInt before
comparing them as strings:

Alternatively, simple use for comparisations, this will get it always right. There is not yet a way
to get a number automatically represented as a string that matches exactly the way Perl represents
it.

int()

will return (at least for Perl v5.7.1 and up) another BigInt, not a Perl scalar:

In all Perl versions you can use for the same effect:

This also works for other subclasses, like Math::String.

It is yet unlcear whether overloaded int() should return a scalar or a BigInt.

length

The following will probably not do what you expect:

It prints both the number of digits in the number and in the fraction part since print calls
in list context. Use something like:

Perl version 5.8.6 documentation - Math::BigInt

Page 24http://perldoc.perl.org

my $x = new Math::BigInt 3*3;
my $y = new Math::BigInt 3*3;

ok ($x,3*3);
print "$x eq 9" if $x eq $y;
print "$x eq 9" if $x eq ’9’;
print "$x eq 9" if $x eq 3*3;

print "$x == 9" if $x == $y;
print "$x == 9" if $x == 9;
print "$x == 9" if $x == 3*3;

use Test;
BEGIN { plan tests => 3 }

use Math::BigInt;

$x = Math::BigInt->new(’1e56’); $y = 1e56;
ok ($x,$y); # will fail
ok ($x->bsstr(),$y); # okay
$y = Math::BigInt->new($y);
ok ($x,$y); # okay

$x = Math::BigInt->new(123);
$y = int($x); # BigInt 123
$x = Math::BigFloat->new(123.45);
$y = int($x); # BigInt 123

$x = Math::BigFloat->new(123.45);
$y = $x->as_number(); # BigInt 123

$c = Math::BigInt->new(123);
print $c->length(),"\n"; # prints 30

print scalar $c->length(),"\n"; # prints 3

bsstr() 1e+2 100

<=>

int()

as_number()

length()

bdiv

The following will probably not do what you expect:

It prints both quotient and remainder since print calls in list context. Also, will
modify $c, so be carefull. You probably want to use

instead.

The quotient is always the greatest integer less than or equal to the real-valued quotient of the two
operands, and the remainder (when it is nonzero) always has the same sign as the second
operand; so, for example,

As a consequence, the behavior of the operator % agrees with the behavior of Perl's built-in %
operator (as documented in the perlop manpage), and the equation

holds true for any $x and $y, which justifies calling the two return values of bdiv() the quotient and
remainder. The only exception to this rule are when $y == 0 and $x is negative, then the remainder
will also be negative. See below under "infinity handling" for the reasoning behing this.

Perl's 'use integer;' changes the behaviour of % and / for scalars, but will not change BigInt's way to
do things. This is because under 'use integer' Perl will do what the underlying C thinks is right and
this is different for each system. If you need BigInt's behaving exactly like Perl's 'use integer', bug
the author to implement it ;)

infinity handling

Here are some examples that explain the reasons why certain results occur while handling infinity:

The following table shows the result of the division and the remainder, so that the equation above
holds true. Some "ordinary" cases are strewn in to show more clearly the reasoning:

Perl version 5.8.6 documentation - Math::BigInt

Page 25http://perldoc.perl.org

print $c->bdiv(10000),"\n";

print $c / 10000,"\n";
print scalar $c->bdiv(10000),"\n"; # or if you want to modify $c

1 / 4 => (0, 1)
1 / -4 => (-1,-3)
-3 / 4 => (-1, 1)
-3 / -4 => (0,-3)
-11 / 2 => (-5,1)
11 /-2 => (-5,-1)

$x == ($x / $y) * $y + ($x % $y)

A / B = C, R so that C * B + R = A
===

5 / 8 = 0, 5 0 * 8 + 5 = 5
0 / 8 = 0, 0 0 * 8 + 0 = 0
0 / inf = 0, 0 0 * inf + 0 = 0
0 /-inf = 0, 0 0 * -inf + 0 = 0
5 / inf = 0, 5 0 * inf + 5 = 5
5 /-inf = 0, 5 0 * -inf + 5 = 5
-5/ inf = 0, -5 0 * inf + -5 = -5
-5/-inf = 0, -5 0 * -inf + -5 = -5

inf/ 5 = inf, 0 inf * 5 + 0 = inf
-inf/ 5 = -inf, 0 -inf * 5 + 0 = -inf
inf/ -5 = -inf, 0 -inf * -5 + 0 = inf
-inf/ -5 = inf, 0 inf * -5 + 0 = -inf

5/ 5 = 1, 0 1 * 5 + 0 = 5
-5/ -5 = 1, 0 1 * -5 + 0 = -5

inf/ inf = 1, 0 1 * inf + 0 = inf

bdiv() bdiv()

These cases below violate the "remainder has the sign of the second of the two arguments", since
they wouldn't match up otherwise.

Modifying and =

Beware of:

It will not do what you think, e.g. making a copy of $x. Instead it just makes a second reference to
the object and stores it in $y. Thus anything that modifies $x (except overloaded operators)
will modify $y, and vice versa. Or in other words, is only safe if you modify your BigInts only via
overloaded math. As soon as you use a method call it breaks:

If you want a true copy of $x, use:

You can also chain the calls like this, this will make first a copy and then multiply it by 2:

See also the documentation for overload.pm regarding .

bpow

(and the rounding functions) now modifies the first argument and returns it, unlike the old
code which left it alone and only returned the result. This is to be consistent with etc. The
first three will modify $x, the last one won't:

The form is faster than , though.

Overloading -$x

The following:

is slower than

since overload calls instead of . The first variant needs to preserve $x

Perl version 5.8.6 documentation - Math::BigInt

Page 26http://perldoc.perl.org

-inf/-inf = 1, 0 1 * -inf + 0 = -inf
inf/-inf = -1, 0 -1 * -inf + 0 = inf
-inf/ inf = -1, 0 1 * -inf + 0 = -inf

8/ 0 = inf, 8 inf * 0 + 8 = 8
inf/ 0 = inf, inf inf * 0 + inf = inf
0/ 0 = NaN

A / B = C, R so that C * B + R = A
==
-inf/ 0 = -inf, -inf -inf * 0 + inf = -inf

-8/ 0 = -inf, -8 -inf * 0 + 8 = -8

$x = Math::BigFloat->new(5);
$y = $x;

$x->bmul(2);
print "$x, $y\n"; # prints ’10, 10’

$y = $x->copy();

$y = $x->copy()->bmul(2);

print bpow($x,$i),"\n"; # modify $x
print $x->bpow($i),"\n"; # ditto
print $x **= $i,"\n"; # the same
print $x ** $i,"\n"; # leave $x alone

$x = -$x;

$x->bneg();

same
=

=

bpow()
badd()

$x **= $y $x = $x ** $y;

sub($x,0,1); neg($x)

since it does not know that it later will get overwritten. This makes a copy of $x and takes O(N), but
$x->bneg() is O(1).

With Copy-On-Write, this issue would be gone, but C-o-W is not implemented since it is slower for
all other things.

Mixing different object types

In Perl you will get a floating point value if you do one of the following:

With overloaded math, only the first two variants will result in a BigFloat:

This is because math with overloaded operators follows the first (dominating) operand, and the
operation of that is called and returns thus the result. So, Math::BigInt::bdiv() will always return a
Math::BigInt, regardless whether the result should be a Math::BigFloat or the second operant is one.

To get a Math::BigFloat you either need to call the operation manually, make sure the operands are
already of the proper type or casted to that type via Math::BigFloat->new():

Beware of simple "casting" the entire expression, this would only convert the already computed
result:

Beware also of the order of more complicated expressions like:

If in doubt, break the expression into simpler terms, or cast all operands to the desired resulting
type.

Scalar values are a bit different, since:

will both result in the proper type due to the way the overloaded math works.

This section also applies to other overloaded math packages, like Math::String.

One solution to you problem might be autoupgrading|upgrading. See the pragmas ,
and for an easy way to do this.

bsqrt()

Perl version 5.8.6 documentation - Math::BigInt

Page 27http://perldoc.perl.org

$float = 5.0 + 2;
$float = 2 + 5.0;
$float = 5 / 2;

use Math::BigInt;
use Math::BigFloat;

$mbf = Math::BigFloat->new(5);
$mbi2 = Math::BigInteger->new(5);
$mbi = Math::BigInteger->new(2);

what actually gets called:
$float = $mbf + $mbi; # $mbf->badd()
$float = $mbf / $mbi; # $mbf->bdiv()
$integer = $mbi + $mbf; # $mbi->badd()
$integer = $mbi2 / $mbi; # $mbi2->bdiv()
$integer = $mbi2 / $mbf; # $mbi2->bdiv()

$float = Math::BigFloat->new($mbi2) / $mbi; # = 2.5

$float = Math::BigFloat->new($mbi2 / $mbi); # = 2.0 thus wrong!

$integer = ($mbi2 + $mbi) / $mbf; # int / float => int
$integer = $mbi2 / Math::BigFloat->new($mbi); # ditto

$float = 2 + $mbf;
$float = $mbf + 2;

bignum bigint
bigrat

works only good if the result is a big integer, e.g. the square root of 144 is 12, but from 12
the square root is 3, regardless of rounding mode. The reason is that the result is always truncated
to an integer.

If you want a better approximation of the square root, then use:

brsft()

For negative numbers in base see also .

This program is free software; you may redistribute it and/or modify it under the same terms as Perl
itself.

, and as well as , and
.

The pragmas , and also might be of interest because they solve the
autoupgrading/downgrading issue, at least partly.

The package at contains
more documentation including a full version history, testcases, empty subclass files and benchmarks.

Original code by Mark Biggar, overloaded interface by Ilya Zakharevich. Completely rewritten by Tels
http://bloodgate.com in late 2000, 2001 - 2003 and still at it in 2004.

Many people contributed in one or more ways to the final beast, see the file CREDITS for an
(uncomplete) list. If you miss your name, please drop me a mail. Thank you!

Perl version 5.8.6 documentation - Math::BigInt

Page 28http://perldoc.perl.org

bsqrt()

$x = Math::BigFloat->new(12);
Math::BigFloat->precision(0);
Math::BigFloat->round_mode(’even’);
print $x->copy->bsqrt(),"\n"; # 4

Math::BigFloat->precision(2);
print $x->bsqrt(),"\n"; # 3.46
print $x->bsqrt(3),"\n"; # 3.464

brsft

Math::BigFloat Math::BigRat Math::Big Math::BigInt::BitVect Math::BigInt::Pari
Math::BigInt::GMP

bignum bigint bigrat

http://search.cpan.org/search?mode=module&query=Math%3A%3ABigInt

LICENSE

SEE ALSO

AUTHORS

