
Memoize - Make functions faster by trading space for time

This is normally all you need to know. However, many options are available:

Options include:

`Memoizing' a function makes it faster by trading space for time. It does this by caching the return
values of the function in a table. If you call the function again with the same arguments,
jumps in and gives you the value out of the table, instead of letting the function compute the value all
over again.

Here is an extreme example. Consider the Fibonacci sequence, defined by the following function:

This function is very slow. Why? To compute fib(14), it first wants to compute fib(13) and fib(12), and
add the results. But to compute fib(13), it first has to compute fib(12) and fib(11), and then it comes
back and computes fib(12) all over again even though the answer is the same. And both of the times
that it wants to compute fib(12), it has to compute fib(11) from scratch, and then it has to do it again
each time it wants to compute fib(13). This function does so much recomputing of old results that it
takes a really long time to run---fib(14) makes 1,200 extra recursive calls to itself, to compute and
recompute things that it already computed.

This function is a good candidate for memoization. If you memoize the `fib' function above, it will
compute fib(14) exactly once, the first time it needs to, and then save the result in a table. Then if you
ask for fib(14) again, it gives you the result out of the table. While computing fib(14), instead of
computing fib(12) twice, it does it once; the second time it needs the value it gets it from the table. It

Perl version 5.8.6 documentation - Memoize

Page 1http://perldoc.perl.org

NAME

SYNOPSIS

DESCRIPTION

This is the documentation for Memoize 1.01
use Memoize;
memoize(’slow_function’);
slow_function(arguments); # Is faster than it was before

memoize(function, options...);

NORMALIZER => function
INSTALL => new_name

SCALAR_CACHE => ’MEMORY’
SCALAR_CACHE => [’HASH’, \%cache_hash]

SCALAR_CACHE => ’FAULT’
SCALAR_CACHE => ’MERGE’

LIST_CACHE => ’MEMORY’
LIST_CACHE => [’HASH’, \%cache_hash]

LIST_CACHE => ’FAULT’
LIST_CACHE => ’MERGE’

Compute Fibonacci numbers
sub fib {
my $n = shift;
return $n if $n < 2;
fib($n-1) + fib($n-2);

}

memoize

doesn't compute fib(11) four times; it computes it once, getting it from the table the next three times.
Instead of making 1,200 recursive calls to `fib', it makes 15. This makes the function about 150 times
faster.

You could do the memoization yourself, by rewriting the function, like this:

Or you could use this module, like this:

This makes it easy to turn memoizing on and off.

Here's an even simpler example: I wrote a simple ray tracer; the program would look in a certain
direction, figure out what it was looking at, and then convert the `color' value (typically a string like
`red') of that object to a red, green, and blue pixel value, like this:

Since there are relatively few objects in a picture, there are only a few colors, which get looked up
over and over again. Memoizing sped up the program by several percent.

This module exports exactly one function, . The rest of the functions in this package are
None of Your Business.

You should say

where is the name of the function you want to memoize, or a reference to it.
returns a reference to the new, memoized version of the function, or on a non-fatal error. At
present, there are no non-fatal errors, but there might be some in the future.

If was the name of a function, then hides the old version and installs the new
memoized version under the old name, so that actually invokes the memoized
version.

Perl version 5.8.6 documentation - Memoize

Page 2http://perldoc.perl.org

Compute Fibonacci numbers, memoized version
{ my @fib;

sub fib {
my $n = shift;
return $fib[$n] if defined $fib[$n];
return $fib[$n] = $n if $n < 2;
$fib[$n] = fib($n-1) + fib($n-2);

}
}

use Memoize;
memoize(’fib’);

Rest of the fib function just like the original version.

for ($direction = 0; $direction < 300; $direction++) {
Figure out which object is in direction $direction
$color = $object->{color};
($r, $g, $b) = @{&ColorToRGB($color)};
...

}

memoize(function)

ColorToRGB

memoize

function memoize
undef

function memoize
&function(...)

DETAILS

There are some optional options you can pass to to change the way it behaves a little. To
supply options, invoke like this:

Each of these options is optional; you can include some, all, or none of them.

If you supply a function name with , memoize will install the new, memoized version of the
function under the name you give. For example,

installs the memoized version of as ; without the option it would have
replaced the old with the memoized version.

To prevent from installing the memoized version anywhere, use .

Suppose your function looks like this:

Now, the following calls to your function are all completely equivalent:

However, unless you tell that these calls are equivalent, it will not know that, and it will
compute the values for these invocations of your function separately, and store them separately.

To prevent this, supply a function that turns the program arguments into a string in a
way that equivalent arguments turn into the same string. A function for above might
look like this:

Perl version 5.8.6 documentation - Memoize

Page 3http://perldoc.perl.org

OPTIONS
memoize

memoize

INSTALL

fib fastfib INSTALL
fib

memoize INSTALL => undef

Memoize

NORMALIZER
NORMALIZER f

memoize(function, NORMALIZER => function,
INSTALL => newname,

SCALAR_CACHE => option,
LIST_CACHE => option

);

memoize(’fib’, INSTALL => ’fastfib’)

Typical call: f(’aha!’, A => 11, B => 12);
sub f {
my $a = shift;
my %hash = @_;
$hash{B} ||= 2; # B defaults to 2
$hash{C} ||= 7; # C defaults to 7

Do something with $a, %hash
}

f(OUCH);
f(OUCH, B => 2);
f(OUCH, C => 7);
f(OUCH, B => 2, C => 7);
f(OUCH, C => 7, B => 2);
(etc.)

sub normalize_f {
my $a = shift;
my %hash = @_;
$hash{B} ||= 2;

INSTALL

NORMALIZER

Each of the argument lists above comes out of the function looking exactly the same,
like this:

You would tell to use this normalizer this way:

knows that if the normalized version of the arguments is the same for two argument lists,
then it can safely look up the value that it computed for one argument list and return it as the result of
calling the function with the other argument list, even if the argument lists look different.

The default normalizer just concatenates the arguments with character 28 in between. (In ASCII, this
is called FS or control-\.) This always works correctly for functions with only one string argument, and
also when the arguments never contain character 28. However, it can confuse certain argument lists:

for example.

Since hash keys are strings, the default normalizer will not distinguish between and the empty
string. It also won't work when the function's arguments are references. For example, consider a
function which gets two arguments: A number, and a reference to an array of numbers:

The default normalizer will turn this into something like . That would be
all right, except that a subsequent array of numbers might be stored at a different location even
though it contains the same data. If this happens, will think that the arguments are different,
even though they are equivalent. In this case, a normalizer like this is appropriate:

For the example above, this produces the key "13 1 2 3 4 5 6 7".

Another use for normalizers is when the function depends on data other than those in its arguments.
Suppose you have a function which returns a value which depends on the current hour of the day:

Perl version 5.8.6 documentation - Memoize

Page 4http://perldoc.perl.org

$hash{C} ||= 7;

join(’,’, $a, map ($_ => $hash{$_}) sort keys %hash);
}

OUCH,B,2,C,7

memoize(’f’, NORMALIZER => ’normalize_f’);

normalizer("a\034", "b")
normalizer("a", "\034b")
normalizer("a\034\034b")

g(13, [1,2,3,4,5,6,7]);

sub normalize { join ’ ’, $_[0], @{$_[1]} }

sub on_duty {
my ($problem_type) = @_;

my $hour = (localtime)[2];
open my $fh, "$DIR/$problem_type" or die...;
my $line;
while ($hour-- > 0)
$line = <$fh>;

}
return $line;

}

normalize_f

Memoize

memoize

undef

g

"13\034ARRAY(0x436c1f)"

Memoize

At 10:23, this function generates the 10th line of a data file; at 3:45 PM it generates the 15th line
instead. By default, will only see the $problem_type argument. To fix this, include the
current hour in the normalizer:

The calling context of the function (scalar or list context) is propagated to the normalizer. This means
that if the memoized function will treat its arguments differently in list context than it would in scalar
context, you can have the normalizer function select its behavior based on the results of .
Even if called in a list context, a normalizer should still return a single string.

Normally, caches your function's return values into an ordinary Perl hash variable.
However, you might like to have the values cached on the disk, so that they persist from one run of
your program to the next, or you might like to associate some other interesting semantics with the
cached values.

There's a slight complication under the hood of : There are actually caches, one for
scalar values and one for list values. When your function is called in scalar context, its return value is
cached in one hash, and when your function is called in list context, its value is cached in the other
hash. You can control the caching behavior of both contexts independently with these options.

The argument to or must either be one of the following four strings:

or else it must be a reference to a list whose first element is one of these four strings, such as
.

means that return values from the function will be cached in an ordinary Perl hash
variable. The hash variable will not persist after the program exits. This is the default.

allows you to specify that a particular hash that you supply will be used as the cache.
You can tie this hash beforehand to give it any behavior you want.

A tied hash can have any semantics at all. It is typically tied to an on-disk database, so that
cached values are stored in the database and retrieved from it again when needed, and the
disk file typically persists after your program has exited. See for more complete
details about .

A typical example is:

This has the effect of storing the cache in a database whose name is in
. The cache will persist after the program has exited. Next time the program runs, it will find
the cache already populated from the previous run of the program. Or you can forcibly
populate the cache by constructing a batch program that runs in the background and
populates the cache file. Then when you come to run your real program the memoized
function will be fast because all its results have been precomputed.

Perl version 5.8.6 documentation - Memoize

Page 5http://perldoc.perl.org

sub normalize { join ’ ’, (localtime)[2], @_ }

MEMORY
FAULT
MERGE

HASH

use DB_File;
tie my %cache => ’DB_File’, $filename, O_RDWR|O_CREAT, 0666;
memoize ’function’, SCALAR_CACHE => [HASH => \%cache];

Memoize

wantarray

Memoize

Memoize

LIST_CACHE SCALAR_CACHE

[HASH, arguments...]

MEMORY

MEMORY

HASH

HASH

perltie
tie

DB_File $filename

TIE

SCALAR_CACHE, LIST_CACHE

two

This option is no longer supported. It is still documented only to aid in the debugging of old
programs that use it. Old programs should be converted to use the option instead.

is merely a shortcut for

means that you never expect to call the function in scalar (or list) context, and that if
detects such a call, it should abort the program. The error message is one of

normally means the function does not distinguish between list and sclar context, and
that return values in both contexts should be stored together.
means that list context return values should be stored in the same hash that is used for scalar
context returns, and means the same, mutatis mutandis. It is an
error to specify for both, but it probably does something useful.

Consider this function:

Normally, the following code will result in two calls to :

The first call caches the value in the scalar cache; the second caches the list in the list
cache. The third call doesn't call the real function; it gets the value from the scalar cache.

Obviously, the second call to is a waste of time, and storing its return value is a waste of
space. Specifying will make use the same cache for
scalar and list context return values, so that the second call uses the scalar cache that was
populated by the first call. ends up being called only once, and both subsequent calls
return from the cache, regardless of the calling context.

Another use for is when you want both kinds of return values stored in the same disk
file; this saves you from having to deal with two disk files instead of one. You can use a
normalizer function to keep the two sets of return values separate. For example:

Perl version 5.8.6 documentation - Memoize

Page 6http://perldoc.perl.org

HASH

FAULT

FAULT
Memoize

MERGE

MERGE
LIST_CACHE => MERGE

SCALAR_CACHE => MERGE
MERGE

pi

3 (3)
pi

pi
LIST_CACHE => MERGE memoize

pi
3

MERGE

memoize ... [TIE, PACKAGE, ARGS...]

require PACKAGE;
{ my %cache;

tie %cache, PACKAGE, ARGS...;
}

memoize ... [HASH => \%cache];

‘foo’ function called in forbidden list context at line ...
‘foo’ function called in forbidden scalar context at line ...

sub pi { 3; }

$x = pi();
($y) = pi();
$z = pi();

tie my %cache => ’MLDBM’, ’DB_File’, $filename, ...;

memoize ’myfunc’,
NORMALIZER => ’n’,
SCALAR_CACHE => [HASH => \%cache],
LIST_CACHE => MERGE,

;

sub n {
my $context = wantarray() ? ’L’ : ’S’;
... now compute the hash key from the arguments ...

This normalizer function will store scalar context return values in the disk file under keys that
begin with , and list context return values under keys that begin with .

There's an function that you can import if you want to. Why would you want to? Here's an
example: Suppose you have your cache tied to a DBM file, and you want to make sure that the cache
is written out to disk if someone interrupts the program. If the program exits normally, this will happen
anyway, but if someone types control-C or something then the program will terminate immediately
without synchronizing the database. So what you can do instead is

accepts a reference to, or the name of a previously memoized function, and undoes
whatever it did to provide the memoized version in the first place, including making the name refer to
the unmemoized version if appropriate. It returns a reference to the unmemoized version of the
function.

If you ask it to unmemoize a function that was never memoized, it croaks.

will flush out the caches, discarding the cached data. The argument
may be a function name or a reference to a function. For finer control over when data is discarded or
expired, see the documentation for , included in this package.

Note that if the cache is a tied hash, will attempt to invoke the method on the
hash. If there is no method, this will cause a run-time error.

An alternative approach to cache flushing is to use the option (see above) to request that
use a particular hash variable as its cache. Then you can examine or modify the hash at

any time in any way you desire. You may flush the cache by using .

Memoization is not a cure-all:

Do not memoize a function whose behavior depends on program state other than its own
arguments, such as global variables, the time of day, or file input. These functions will not
produce correct results when memoized. For a particularly easy example:

This function takes no arguments, and as far as is concerned, it always returns the
same result. is wrong, of course, and the memoized version of this function will call

once to get the current time, and it will return that same time every time you call it after
that.

Do not memoize a function with side effects.

Perl version 5.8.6 documentation - Memoize

Page 7http://perldoc.perl.org

$hashkey = "$context:$hashkey";
}

$SIG{INT} = sub { unmemoize ’function’ };

sub f {
time;

}

sub f {
my ($a, $b) = @_;

my $s = $a + $b;
print "$a + $b = $s.\n";

}

S: L:

unmemoize

unmemoize

flush_cache(function)

Memoize::Expire

flush_cache CLEAR
CLEAR

HASH
Memoize

%hash = ()

Memoize
Memoize

time

OTHER FACILITIES

CAVEATS

unmemoize

flush_cache
all

This function accepts two arguments, adds them, and prints their sum. Its return value is the
numuber of characters it printed, but you probably didn't care about that. But doesn't
understand that. If you memoize this function, you will get the result you expect the first time
you ask it to print the sum of 2 and 3, but subsequent calls will return 1 (the return value of

) without actually printing anything.

Do not memoize a function that returns a data structure that is modified by its caller.

Consider these functions: returns a list of users somehow, and then throws
away the first user on the list and prints the rest:

If you memoize here, it will work right exactly once. The reference to the users list
will be stored in the memo table. will discard the first element from the referenced list.
The next time you invoke , will not call ; it will just return the same
reference to the same list it got last time. But this time the list has already had its head
removed; will erroneously remove another element from it. The list will get shorter and
shorter every time you call .

Similarly, this:

will modify $u2 as well as $u1, because both variables are references to the same array. Had
not been memoized, $u1 and $u2 would have referred to different arrays.

Do not memoize a very simple function.

Recently someone mentioned to me that the Memoize module made his program run slower
instead of faster. It turned out that he was memoizing the following function:

I pointed out that uses a hash, and that looking up a number in the hash is
necessarily going to take a lot longer than a single multiplication. There really is no way to
speed up the function.

Memoization is not magical.

You can tie the cache tables to any sort of tied hash that you want to, as long as it supports ,
, , and . For example,

Perl version 5.8.6 documentation - Memoize

Page 8http://perldoc.perl.org

sub main {
my $userlist = getusers();
shift @$userlist;
foreach $u (@$userlist) {
print "User $u\n";

}
}

sub getusers {
my @users;
Do something to get a list of users;
\@users; # Return reference to list.

}

$u1 = getusers();
$u2 = getusers();
pop @$u1;

sub square {
$_[0] * $_[0];

}

tie my %cache => ’GDBM_File’, $filename, O_RDWR|O_CREAT, 0666;
memoize ’function’, SCALAR_CACHE => [HASH => \%cache];

Memoize

print

getusers main

getusers
main

main Memoize getusers

main
main

getusers

Memoize

square

TIEHASH
FETCH STORE EXISTS

PERSISTENT CACHE SUPPORT

works just fine. For some storage methods, you need a little glue.

doesn't supply an method, so included in this package is a glue module called
which does provide one. Use this instead of plain to store your

cache table on disk in an database:

has the same problem and the same solution. (Use
)

isn't a tied hash class at all. You can use it to store a hash to disk and retrieve it again, but
you can't modify the hash while it's on the disk. So if you want to store your cache table in a

database, use , which puts a hashlike front-end onto .
The hash table is actually kept in memory, and is loaded from your file at the time you
memoize the function, and stored back at the time you unmemoize the function (or when your
program exits):

Include the `nstore' option to have the database written in `network order'. (See
for more details about this.)

The function will raise a run-time error unless the tied package provides a
method.

See Memoize::Expire, which is a plug-in module that adds expiration functionality to Memoize. If you
don't like the kinds of policies that Memoize::Expire implements, it is easy to write your own plug-in
module to implement whatever policy you desire. Memoize comes with several examples. An
expiration manager that implements a LRU policy is available on CPAN as Memoize::ExpireLRU.

The test suite is much better, but always needs improvement.

There is some problem with the way works under threaded Perl, perhaps because of the
lexical scoping of . This is a bug in Perl, and until it is resolved, memoized functions will see a
slightly different and will perform a little more slowly on threaded perls than unthreaded
perls.

Some versions of won't let you store data under a key of length 0. That means that if you
have a function which you memoized and the cache is in a database, then the value of

(called with no arguments) will not be memoized. If this is a big problem, you can supply a
normalizer function that prepends to every key.

To join a very low-traffic mailing list for announcements about , send an empty note to
.

Perl version 5.8.6 documentation - Memoize

Page 9http://perldoc.perl.org

tie my %cache => ’Memoize::SDBM_File’, $filename, O_RDWR|O_CREAT,
0666;

memoize ’function’, SCALAR_CACHE => [HASH => \%cache];

tie my %cache => ’Memoize::Storable’, $filename;
memoize ’function’, SCALAR_CACHE => [HASH => \%cache];

tie my %cache => ’Memoize::Storable’, $filename, ’nstore’;
memoize ’function’, SCALAR_CACHE => [HASH => \%cache];

SDBM_File EXISTS
Memoize::SDBM_File SDBM_File

SDBM_File

NDBM_File Memoize::NDBM_File instead
of plain NDBM_File.

Storable

Storable Memoize::Storable Storable
Storable

Storable

flush_cache() CLEAR

goto &f
@_

caller()

DB_File
f DB_File

f() f
"x"

Memoize
mjd-perl-memoize-request@plover.com

Storable

EXPIRATION SUPPORT

BUGS

MAILING LIST

Mark-Jason Dominus (), Plover Systems co.

See the Page at http://www.plover.com/~mjd/perl/Memoize/ for news and upgrades.
Near this page, at http://www.plover.com/~mjd/perl/MiniMemoize/ there is an article about
memoization and about the internals of Memoize that appeared in The Perl Journal, issue #13. (This
article is also included in the Memoize distribution as `article.html'.)

My upcoming book will discuss memoization (and many other fascinating topics) in tremendous detail.
It will be published by Morgan Kaufmann in 2002, possibly under the title

. It will also be available on-line for free. For more information, visit
http://perl.plover.com/book/ .

To join a mailing list for announcements about , send an empty message to
. This mailing list is for announcements only and has

extremely low traffic---about two messages per year.

Copyright 1998, 1999, 2000, 2001 by Mark Jason Dominus

This library is free software; you may redistribute it and/or modify it under the same terms as Perl
itself.

Many thanks to Jonathan Roy for bug reports and suggestions, to Michael Schwern for other bug
reports and patches, to Mike Cariaso for helping me to figure out the Right Thing to Do About
Expiration, to Joshua Gerth, Joshua Chamas, Jonathan Roy (again), Mark D. Anderson, and Andrew
Johnson for more suggestions about expiration, to Brent Powers for the Memoize::ExpireLRU
module, to Ariel Scolnicov for delightful messages about the Fibonacci function, to Dion Almaer for
thought-provoking suggestions about the default normalizer, to Walt Mankowski and Kurt Starsinic for
much help investigating problems under threaded Perl, to Alex Dudkevich for reporting the bug in
prototyped functions and for checking my patch, to Tony Bass for many helpful suggestions, to
Jonathan Roy (again) for finding a use for , to Philippe Verdret for enlightening
discussion of , to Nat Torkington for advice I ignored, to Chris Nandor for
portability advice, to Randal Schwartz for suggesting the ' function, and to Jenda
Krynicky for being a light in the world.

Special thanks to Jarkko Hietaniemi, the 5.8.0 pumpking, for including this module in the core and for
his patient and helpful guidance during the integration process.

Perl version 5.8.6 documentation - Memoize

Page 10http://perldoc.perl.org

AUTHOR

COPYRIGHT AND LICENSE

THANK YOU

mjd-perl-memoize+@plover.com

Memoize.pm

Memoize
mjd-perl-memoize-request@plover.com

unmemoize()
Hook::PrePostCall

flush_cache

Perl Advanced Techniques
Handbook

