
bigint - Transparent BigInteger support for Perl

All operators (including basic math operations) are overloaded. Integer constants are created as
proper BigInts.

Floating point constants are truncated to integer. All results are also truncated.

bigint recognizes some options that can be passed while loading it via use. The options can
(currently) be either a single letter form, or the long form. The following options exist:

a or accuracy

This sets the accuracy for all math operations. The argument must be greater than or equal to
zero. See Math::BigInt's bround() function for details.

p or precision

This sets the precision for all math operations. The argument can be any integer. Negative values
mean a fixed number of digits after the dot, and are ignored since all operations happen
in integer space. A positive value rounds to this digit left from the dot. 0 or 1 mean round to integer
and are ignore like negative values.

See Math::BigInt's bfround() function for details.

t or trace

This enables a trace mode and is primarily for debugging bigint or Math::BigInt.

l or lib

Load a different math lib, see .

Currently there is no way to specify more than one library on the command line. This will be
hopefully fixed soon ;)

v or version

This prints out the name and version of all modules used and then exits.

Math with the numbers is done (by default) by a module called Math::BigInt::Calc. This is equivalent to
saying:

Perl version 5.8.6 documentation - bigint

Page 1http://perldoc.perl.org

NAME

SYNOPSIS

DESCRIPTION

use bigint;

$x = 2 + 4.5,"\n"; # BigInt 6
print 2 ** 512,"\n"; # really is what you think it is
print inf + 42,"\n"; # inf
print NaN * 7,"\n"; # NaN

perl -Mbigint=a,2 -le ’print 12345+1’

perl -Mbignum=p,5 -le ’print 123456789+123’

perl -Mbigint=l,GMP -e ’print 2 ** 512’

perl -Mbigint=v -e ’’

OPTIONS

MATH LIBRARY

MATH LIBRARY

You can change this by using:

The following would first try to find Math::BigInt::Foo, then Math::BigInt::Bar, and when this also fails,
revert to Math::BigInt::Calc:

Please see respective module documentation for further details.

The numbers are stored as objects, and their internals might change at anytime, especially between
math operations. The objects also might belong to different classes, like Math::BigInt, or
Math::BigInt::Lite. Mixing them together, even with normal scalars is not extraordinary, but normal and
expected.

You should not depend on the internal format, all accesses must go through accessor methods. E.g.
looking at $x->{sign} is not a good idea since there is no guaranty that the object in question has such
a hash key, nor is a hash underneath at all.

The sign is either '+', '-', 'NaN', '+inf' or '-inf' and stored seperately. You can access it with the sign()
method.

A sign of 'NaN' is used to represent the result when input arguments are not numbers or as a result of
0/0. '+inf' and '-inf' represent plus respectively minus infinity. You will get '+inf' when dividing a positive
number by 0, and '-inf' when dividing any negative number by 0.

Since all numbers are now objects, you can use all functions that are part of the BigInt API. You can
only use the bxxx() notation, and not the fxxx() notation, though.

But a warning is in order. When using the following to make a copy of a number, only a shallow copy
will be made.

Using the copy or the original with overloaded math is okay, e.g. the following work:

but calling any method that modifies the number directly will result in the original and the copy
beeing destroyed:

Using methods that do not modify, but testthe contents works:

Perl version 5.8.6 documentation - bigint

Page 2http://perldoc.perl.org

use bigint lib => ’Calc’;

use bigint lib => ’BitVect’;

use bigint lib => ’Foo,Math::BigInt::Bar’;

$x = 9; $y = $x;
$x = $y = 7;

$x = 9; $y = $x;
print $x + 1, " ", $y,"\n"; # prints 10 9

$x = 9; $y = $x;
print $x->badd(1), " ", $y,"\n"; # prints 10 10

$x = 9; $y = $x;
print $x->binc(1), " ", $y,"\n"; # prints 10 10

$x = 9; $y = $x;
print $x->bmul(2), " ", $y,"\n"; # prints 18 18

$x = 9; $y = $x;

INTERNAL FORMAT

SIGN

METHODS

CAVEAT

both

See the documentation about the copy constructor and in overload, as well as the documentation in
BigInt for further details.

is just a thin wrapper around various modules of the Math::BigInt family. Think of it as the
head of the family, who runs the shop, and orders the others to do the work.

The following modules are currently used by bigint:

Some cool command line examples to impress the Python crowd ;) You might want to compare them
to the results under -Mbignum or -Mbigrat:

This program is free software; you may redistribute it and/or modify it under the same terms as Perl
itself.

Especially as in and as in
.

, and as well as , and
.

(C) by Tels in early 2002, 2003.

Perl version 5.8.6 documentation - bigint

Page 3http://perldoc.perl.org

$z = 9 if $x->is_zero(); # works fine

Math::BigInt::Lite (for speed, and only if it is loadable)
Math::BigInt

perl -Mbigint -le ’print sqrt(33)’
perl -Mbigint -le ’print 2*255’
perl -Mbigint -le ’print 4.5+2*255’
perl -Mbigint -le ’print 3/7 + 5/7 + 8/3’
perl -Mbigint -le ’print 123->is_odd()’
perl -Mbigint -le ’print log(2)’
perl -Mbigint -le ’print 2 ** 0.5’
perl -Mbigint=a,65 -le ’print 2 ** 0.2’

=

bigint

perl -Mbigrat -le ’print 1/3+1/4’ perl
-Mbignum -le ’print sqrt(2)’

MODULES USED

EXAMPLES

LICENSE

SEE ALSO

AUTHORS

bigrat bignum

Math::BigInt Math::BigRat Math::Big Math::BigInt::BitVect Math::BigInt::Pari
Math::BigInt::GMP

http://bloodgate.com/

